SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rummel Christoph) "

Sökning: WFRF:(Rummel Christoph)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roeder, Sebastian S., et al. (författare)
  • Tracking cell turnover in human brain using 15N-thymidine imaging mass spectrometry
  • 2023
  • Ingår i: Frontiers in Neuroscience. - 1662-4548. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly.
  •  
2.
  • Arp, Hans Peter H., et al. (författare)
  • Weathering Plastics as a Planetary Boundary Threat : Exposure, Fate, and Hazards
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:11, s. 7246-7255
  • Tidskriftsartikel (refereegranskat)abstract
    • We described in 2017 how weathering plastic litter in the marine environment fulfils two of three criteria to impose a planetary boundary threat related to chemical pollution and the release of novel entities: (1) planetary-scale exposure, which (2) is not readily reversible. Whether marine plastics meet the third criterion, (3) eliciting a disruptive impact on vital earth system processes, was uncertain. Since then, several important discoveries have been made to motivate a re-evaluation. A key issue is if weathering macroplastics, microplastics, nanoplastics, and their leachates have an inherently higher potential to elicit adverse effects than natural particles of the same size. We summarize novel findings related to weathering plastic in the context of the planetary boundary threat criteria that demonstrate (1) increasing exposure, (2) fate processes leading to poorly reversible pollution, and (3) (eco)toxicological hazards and their thresholds. We provide evidence that the third criterion could be fulfilled for weathering plastics in sensitive environments and therefore conclude that weathering plastics pose a planetary boundary threat. We suggest future research priorities to better understand (eco)toxicological hazards modulated by increasing exposure and continuous weathering processes, to better parametrize the planetary boundary threshold for plastic pollution.
  •  
3.
  • Carmona, Eric, 1988, et al. (författare)
  • A dataset of organic pollutants identified and quantified in recycled polyethylene pellets
  • 2023
  • Ingår i: DATA IN BRIEF. - 2352-3409. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastics are produced with a staggering array of chemical compounds, with many being known to possess hazardous properties, and others lacking comprehensive hazard data. Furthermore, non-intentionally added substances can contaminate plastics at various stages of their lifecycle, resulting in recycled materials containing an unknown number of chemical compounds at unknown concentrations. While some national and regional regulations exist for permissible concentrations of hazardous chemicals in specific plastic products, less than 1 % of plastics chemicals are subject to international regulation [1] . There are currently no policies mandating transparent reporting of chemicals throughout the plastics value chain or comprehensive monitoring of chemicals in recycled materials.The dataset presented here provides the chemical analysis of 28 samples of recycled High-Density Polyethylene (HDPE) pellets obtained from various regions of the Global South, along with a reference sample of virgin HDPE. The analysis comprises both Target and Non-Targeted Screening approaches, employing Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) and Gas Chromatography-High-Resolution Mass Spectrometry (GC-HRMS). In total, 491 organic compounds were detected and quantified, with an additional 170 compounds tentatively annotated. These com-pounds span various classes, including pesticides, pharmaceuticals, industrial chemicals, plastic additives. The results highlight the prevalence of certain chemicals, such as N-ethyl-o-Toluesulfonamide, commonly used in HDPE processing, found in high concentrations. The paper pro-vides a dataset advancing knowledge of the complex chemical composition associated with recycled plastics.
  •  
4.
  • Dorigo, Wouter, et al. (författare)
  • The International Soil Moisture Network : Serving Earth system science for over a decade
  • 2021
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 25:11, s. 5749-5804
  • Forskningsöversikt (refereegranskat)abstract
    • In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements . The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository.
  •  
5.
  • Jahnke, Annika, et al. (författare)
  • Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment
  • 2017
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 4:3, s. 85-90
  • Forskningsöversikt (refereegranskat)abstract
    • Plastic in the global oceans fulfills two of the three conditions for pollution to pose a planetary boundary threat because it is causing planetary-scale exposure that is not readily reversible. Plastic is a planetary boundary threat if it is having a currently unrecognized disruptive effect on a vital Earth system process. Discovering possible unknown effects is likely to be aided by achieving a fuller understanding of the environmental fate of plastic. Weathering of plastic generates microplastic, releases chemical additives, and likely also produces nanoplastic and chemical fragments cleaved from the polymer backbone. However, weathering of plastic in the marine environment is not well understood in terms of time scales for fragmentation and degradation, the evolution of particle morphology and properties, and hazards of the chemical mixture liberated by weathering. Biofilms that form and grow on plastic affect weathering, vertical transport, toxicity, and uptake of plastic by marine organisms and have been underinvestigated. Laboratory studies, monitoring, and models weathering on plastic debris are needed to reduce uncertainty in hazard and risk assessments for known and field of the impact of suspected adverse effects. However, scientists and decision makers must also recognize that plastic in the oceans may have unanticipated effects about which we are currently ignorant. Possible impacts that are currently unknown can be confronted by vigilant monitoring of plastic in the oceans and discovery-oriented research related to the possible effects of weathering plastic.
  •  
6.
  • Rummel, Christoph D., et al. (författare)
  • Effects of Leachates from UV-Weathered Microplastic in Cell-Based Bioassays
  • 2019
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:15, s. 9214-9223
  • Tidskriftsartikel (refereegranskat)abstract
    • Standard ecotoxicological testing of microplastic does not provide insight into the influence that environmental weathering by, e.g., UV light has on related effects. In this study, we leached chemicals from plastic into artificial seawater during simulated UV-induced weathering. We tested largely additive-free preproduction polyethylene, polyethylene terephthalate, polypropylene, and polystyrene and two types of plastic obtained from electronic equipment as positive controls. Leachates were concentrated by solid-phase extraction and dosed into cell-based bioassays that cover (i) cytotoxicity; (ii) activation of metabolic enzymes via binding to the arylhydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor (PPAR gamma); (iii) specific, receptor-mediated effects (estrogenicity, ER alpha); and (iv) adaptive response to oxidative stress (AREc32). LC-HRMS analysis was used to identify possible chain-scission products of polymer degradation, which were then tested in AREc32 and PPAR gamma. Explicit activation of all assays by the positive controls provided proof-of-concept of the experimental setup to demonstrate effects of chemicals liberated during weathering. All plastic leachates activated the oxidative stress response, in most cases with increased induction by UV-treated samples compared to dark controls. For PPAR gamma, polyethylene-specific effects were partially explained by the detected dicarboxylic acids. Since the preproduction plastic showed low effects often in the range of the blanks future studies should investigate implications of weathering on end consumer products containing additives.
  •  
7.
  • Rummel, Christoph D., et al. (författare)
  • Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment
  • 2017
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 4:7, s. 258-267
  • Forskningsöversikt (refereegranskat)abstract
    • In the aquatic environment, microplastic (MP; <5 mm) is a cause of concern because of its persistence and potential adverse effects on biota. Studies of microlitter impacts are mostly based on virgin and spherical polymer particles as model MP. However, in pelagic and benthic environments, surfaces are always colonized by microorganisms forming so-called biofilms. The influence of such biofilms on the fate and potential effects of MP is not understood well. Here, we review the physical interactions of early microbial colonization on plastic surfaces and their reciprocal influence on the weathering processes and vertical transport as well as sorption and release of contaminants by MP. Possible ecological consequences of biofilm formation on MP, such as trophic transfer of MP particles and potential adverse effects of MP, are virtually unknown. However, evidence is accumulating that the biofilm-plastic interactions have the capacity to influence the fate and impacts of MP by modifying the physical properties of the particles. There is an urgent research need to better understand these interactions and increase the ecological relevance of current laboratory testing by simulating field conditions in which microbial life is a key driver of biogeochemical processes.
  •  
8.
  • Rummel, Christoph Daniel, et al. (författare)
  • No measurable cleaning of polychlorinated biphenyls from Rainbow Trout in a 9 week depuration study with dietary exposure to 40% polyethylene microspheres
  • 2016
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 18:7, s. 788-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistent hydrophobic chemicals sorbed to plastic can be transferred to fish and other aquatic organisms upon ingestion. However, ingestion of plastic could also lead to enhanced elimination of these chemicals if the plastic is less contaminated than the fish. Here, we attempted to measure the influence of ingestion of uncontaminated polyethylene microspheres on the depuration rates of polychlorinated biphenyls (PCBs) in an in vivo fish feeding experiment. Rainbow trout were given feed contaminated with PCBs for two consecutive days, then clean feed for three days to allow for egestion of the contaminated food. A control group of fish were then fed ordinary food pellets and a treatment group were fed pellets that additionally contained 40% by weight polyethylene microspheres. Condition factors and growth rates in both groups were similar, indicating no negative effect of the plastic microspheres on the nutritional status of the fish. Fish were sampled after zero, three, six and nine weeks, homogenized, solvent-extracted and analyzed by GC/MS. PCB concentrations declined in both groups at a rate consistent with growth dilution. There was no significant difference in the elimination rate constants between the control and treatment group, indicating that ingestion of uncontaminated plastic did not cause a measurable enhancement of depuration of PCBs by the fish in this study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy