SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryan Declan) "

Sökning: WFRF:(Ryan Declan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Erik M. J., et al. (författare)
  • Photovoltaic and Interfacial Properties of Heterojunctions Containing Dye-sensitized Dense TiO2 and Triarylamine derivatives
  • 2007
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 19:8, s. 2071-2078
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of solid-state heterojunctions comprising a dense TiO2 film electrode as an electron conductor, a ruthenium polypyridine complex (Ru(dcbpy)2(NCS)2) as a light-absorbing dye, and different triarylamine derivatives as hole conductors were prepared, and their photovoltaic properties as well as the molecular and electronic interfacial structures were investigated. The photovoltaic properties were compared to systems containing the hole conductors dissolved in an organic solvent as well as to a system containing a liquid electrolyte containing the iodide/tri-iodide redox couple. Two of the solid-state heterojunctions showed conversion efficiencies close to those of the system containing the iodide/tri-iodide redox couple, while one system was clearly less efficient. To explain the differences in photovoltaic properties the electronic and molecular interfacial structures of the solid-state heterojunctions were investigated by photoelectron spectroscopy (PES). By valence level PES the electronic energy levels highest in energy for the dye and the hole conductors were mapped, and the differences in energy matching partly explain the trends in photovoltaic properties. Differences in the molecular surface structure of the heterojunctions were also observed from the N Is core level measurements. Specifically it was found that the smaller hole conductor, showing low photocurrent yield, is inserted into the dye layer.
  •  
2.
  • Johansson, Erik, et al. (författare)
  • PHOTOVOLTAIC AND INTERFACIAL PROPERTIES OF HETEROJUNCTIONS COMPRISING DYE-SENSITIZED DENSE TiO2 AND TRIARYLAMINE DERIVATIVES IN SOLID AND LIQUID STATE.
  • 1996
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Different triarylamine derivatives have successfully been used as solid hole-conductor materials in dye-sensitized solar cells with efficiencies up to 4% [1-3]. In the present work TiO2/dye/ hole-conductor heterojunctions is assembled to form model systems for solid state DSSC and the interfacial structure at the molecular level. A series of triarylamine molecules is used to investigate the influence of small differences in the hole-conductor material structure on the photovoltaic and molecular surface properties. Both solid state and liquid state junctions with the triarylamine molecules were investigated. In the solid state heterojunctions the hole-conductor molecules were evaporated on the substrate and in the liquid state heterojunctions the hole-conductor molecules were solvated in an organic solvent. The photovoltaic properties of the heterojunction largely depend on the electron transfer rates at the interfaces between the different materials (semiconductor, dye and hole-conductor). Photoelectron Spectroscopy (PES) measurements was used to investigate the molecular and electronic interface structure. In the figure below the valence electronic structure of interfaces with the different hole-conductors are shown.From the valence PES the interaction and the energy level matching between the dyes and the hole-conductors is studied. The results show large differences in the energy matching of the different holconducting materials with respect to the dye molecules partly explaining the differences in efficiency. The valence structure also shows that when combining different materials their individual properties adjust slightly to their new environment. From the core level PES we observe differences molecular surface structure. Specifically it was found that the smaller holecondctors are able to penetrate the dye layer and contact the TiO2 surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy