SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sagawa S) "

Sökning: WFRF:(Sagawa S)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
4.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
5.
  • Roelfsema, P. R., et al. (författare)
  • In-orbit performance of Herschel-HIFI
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described.Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources.Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
6.
  •  
7.
  • Baron, P., et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30 degrees S and 55 degrees N during the northern winter 2009-2010
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (similar to 35-80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35-60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30 degrees S to 55 degrees N and with a single profile precision of 7-9 ms(-1) between 8 and 0.6 hPa and better than 20 ms(-1) at altitudes above. The vertical resolution is 5-7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1-0.05 hPa, an absolute value of the mean difference 5 ms(-1)). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (>20 ms(-1)), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50-55 degrees N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of similar to 20 ms(-1)). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
8.
  • Baron, Phillippe, et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking. We report observations of winds between 8 and 0.01 hPa (~35–80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35–60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30° S to 55° N and with a single profile precision of 7–9 m s−1 between 8 and 0.6 hPa and better than 20 m s−1 at altitudes above. The vertical resolution is 5–7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1–0.05 hPa, a mean difference <2 m s−1 is found between SMILES profiles retrieved from different spectroscopic lines and instrumental settings. Good agreement (mean difference of ~2 m s−1) is also found with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis in most of the stratosphere except for the zonal winds over the equator (mean difference of 5–10 m s−1). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (> 20 m s−1), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50° N–55° N during sudden stratospheric warmings in the stratosphere. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of ~20 m s−1). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
9.
  • Bisconti, F., et al. (författare)
  • EUSO-TA ground based fluorescence detector : Analysis of the detected events
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • EUSO-TA is a ground-based florescence detector built to validate the design of an ultra-high energy cosmic ray fluorescence detector to be operated in space. EUSO-TA detected the first air shower events with the technology developed within the JEM-EUSO program. It operates at the Telescope Array (TA) site in Utah, USA. With the external trigger provided by the Black Rock Mesa fluorescence detectors of Telescope Array (TA-FDs), EUSO-TA observed nine ultra-high energy cosmic ray events and several laser events from the Central Laser Facility of Telescope Array and portable lasers like the JEM-EUSO Global Light System prototype. The reconstruction parameters of the cosmic ray events which crossed the EUSO-TA field of view (both detected and not detected by EUSO-TA), were provided by the Telescope Array Collaboration. As the TA-FDs have a wider field of view than EUSO-TA (~30 times larger), they allow the cosmic ray energy reconstruction based on the observation of most of the extensive air-shower profiles, including the shower maximum, while EUSO-TA only observes a portion of the showers, usually far from the maximum. For this reason, the energy of the cosmic rays corresponding to the EUSO-TA signals appear lower than the actual ones. In this contribution, the analysis of the cosmic-ray events detected with EUSO-TA is discussed. 
  •  
10.
  • Baron, P., et al. (författare)
  • AMATERASU: Model for atmospheric TeraHertz Radiation analysis and simulation
  • 2008
  • Ingår i: Journal of the National Institute of Information and Communications Technology. - 1349-3205. ; 55:1, s. 109-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the current status of the Advanced Model for Atmospheric TeraHertz Radiation Analysis and Simulation (AMATERASU) that is being developed in the framework of the NICT THz project. This code aims to be used for studying the insterest of the THz frequency region for atmospheric remote sensing, communication systems and estimate the impact of the THz thermal atmospheric emission in the Earth energy budget. This paper presents the first stage of the model development that concerns a non scattering and a horizontal homogeneous atmosphere, e.g., the geophysical parameters are only altitude dependent. A scattering module is being developed but it is presented in an other paper in this issue. The model is based on the Microwave Observation and Lines Estimation and REtrieval code (MOLIERE). The absorption coefficient module has been modified in order to extend the frequency coverage from the submillimeter wavelength to the near InfraRed region. A new radiative transfer module has been implemented that can handle the different types of optical paths and any location for the receiver. AMATERASU includes the original MOLIERE instrument simulator and retrieval codes. The validation methodology is discussed and some examples of the current applications are given. The next steps of the development are presented in the conclusion including the modeling of the horizontal inhomogeneties in the atmopshere.
  •  
11.
  • Baron, P., et al. (författare)
  • Performance Assessment of Superconducting Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2)
  • 2019
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). ; , s. 7556-7559
  • Konferensbidrag (refereegranskat)abstract
    • © 2019 IEEE. SMILES2 is a mission prepared for the next call-for-proposals for JAXA/ISAS M-class scientific satellite mission. It aims at scanning the atmospheric limb from 20 to 160 km above the surface at frequencies near 700 GHz and 2 THz. It could provide the temperature and composition as well as, for the first time, the horizontal wind vector above 30 km, the atomic oxygen in its ground state above 90 km, and the atmospheric density and the geomagnetic field vector near the mesopause. The mission is proposed for the 2nd time and the instrument design has been improved for accounting for the recommendations of the review committee. In this publication, we discuss the measurement performances assessed from simulations including latest results showing the mission potential for measuring the geomagnetic field between 70-110 km.
  •  
12.
  • Baron, P., et al. (författare)
  • Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 219-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20-160 km). The main instrument is composed of 4K cooled radiometers operating near 0.7 and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state atomic oxygen above 90 km and atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere and lower thermosphere (60- 110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect on the O2 line due to the geomagnetic field (B) is considered; otherwise, the retrieval errors would be underestimated by a factor of 2 above 90 km. The optimal configuration for the radiometer's polarization is found to be vertical linear. Considering a retrieval vertical resolution of 2.5 km, the line-of-sight wind is retrieved with a precision of 2-5ms-1 up to 90 km and 30ms-1 at 110 km. Temperature and atmospheric density are retrieved with a precision better than 5K and 7% up to 90 km (30K and 20% at 110 km). Errors induced by uncertainties on the vector B are mitigated by retrieving it. The retrieval of B is described as a side-product of the mission. At high latitudes, precisions of 30-100 nT on the vertical component and 100-300 nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide the first measurements of B close to the electrojets' altitude, and the precision is enough to measure variations induced by solar storms in the auroral regions.
  •  
13.
  • Baron, P., et al. (författare)
  • The level 2 research product algorithms for the superconducting submillimeter-wave limb-emission sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques Discussions. - : Copernicus GmbH. - 1867-8610. ; 4:3, s. 3593-3645
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processingchain developed for the Superconducting Submillimeter-Wave Limb-EmissionSounder (SMILES). The chain has been developed in parallel to the operationalchain for conducting researches on calibration and retrieval algorithms. L2rchain products are available to the scientific community. The objective ofversion 2 is the retrieval of the vertical distribution of trace gases in thealtitude range of 18-90 km. An theoretical error analysis is conducted toestimate the retrieval feasibility of key parameters of the processing:line-of-sight elevation tangent altitudes (or angles), temperature and O3 profiles. The line-of-sight tangent altitudes are retrievedbetween 20 and 50 km from the strong ozone (O3) line at 625.371 GHz,with low correlation with the O3 volume-mixing ratio and temperatureretrieved profiles. Neglecting the non-linearity of the radiometric gain inthe calibration procedure is the main systematic error. It is large for theretrieved temperature (between 5-10 K). Therefore, atmospheric pressure cannot be derived from the retrieved temperature, and, then, in the altituderange where the line-of-sight tangent altitudes are retrieved, the retrievedtrace gases profiles are found to be better represented on pressure levelsthan on altitude levels. The error analysis for the retrieved HOCl profiledemonstrates that best results for inverting weak lines can be obtained byusing narrow spectral windows. Future versions of the L2r algorithms willimprove the temperature/pressure retrievals and also provide information inthe upper tropospheric/lower stratospheric region (e.g., water vapor, icecontent, O3) and on stratospheric and mesospheric line-of-sight winds.
  •  
14.
  • Gono, Y., et al. (författare)
  • Systematics of high-spin isomers in N=83 isotones and a high-spin isomer beam
  • 2002
  • Ingår i: European Physical Journal A. - 1434-6001 .- 1434-601X. ; 13:02-jan, s. 5-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Isomers in N = 83 isotones of Z = 60 66 were studied systematically. Their spins and parities arc,49/2(+) and 27(+) for odd and odd-odd nuclei, respectively. Nearly constant excitation energies of these isomers indicated a decrease of a Z = 64 shell gap energy as Z decreases from 64 to 60 within the framework of a deformed independent-particle model (DIPM). Their configurations are [v(f(tau/2)h(9/2)i(13/2)), pi(h(11/2))(2)](49/2+) and [v(f(7/2)h(9/2)i(13/2)), pi(h(11/2))(2)(d(5/2))(-1)](27+) for odd and odd-odd nuclei, respectively. The shape of the yrast status changes suddenly at spin 49/2(odd) and 27(odd-odd) from a near spherical to an oblate shape. Transitions from isomers are highly hindered because of the shape changes. They may be categorized to be shape isomers. The development of a secondary beam produced by using these high-spin isomers is also described.
  •  
15.
  • Kasai, Y., et al. (författare)
  • Overview of the Martian atmospheric submillimetre sounder FIRE
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 63-64:SI, s. 62-82
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a submillimetre-wave atmospheric emission sounding instrument, called Far-InfraRed Experiment (FIRE), for the Japanese Martian exploration programme "Mars Exploration with Lander-Orbiter Synergy" (MELOS). The scientific target of FIRE/MELOS is to understand the dust suspended meteorology of the Mars. FIRE will provide key meteorological parameters, such as atmospheric temperature profiles for outside and inside dust storms, the abundance profile of the atmospheric compositions and their isotopes, and wind velocity profiles. FIRE will also provide the local time dependency of these parameters. The observational sensitivity of FIRE/MELOS is discussed in this paper. FIRE will explore the meteorological system of the Martian atmosphere including the interaction between its surface and atmosphere.
  •  
16.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
17.
  • Khosravi, Maryam, 1975, et al. (författare)
  • Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:15, s. 7587-7606
  • Tidskriftsartikel (refereegranskat)abstract
    • The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR) on board Odin, the Microwave Limb Sounder (MLS) on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS) and measurements from solar occultation instruments (ACE-FTS) is challenging since the measurements correspond to different solar zenith angles (or local times). However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20 degrees S to 20 degrees N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3) of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite observations and the model agree well in terms of absolute mixing ratios. The differences between the day and night values of the model are in good agreement with the observations although the amplitude of the HO2 diurnal variation is 10-20 % lower in the model than in the observations. In particular, the data offered the opportunity to study the reaction ClO+HO2 -> HOCl+O-2 in the lower mesosphere at 55 km. At this altitude the HOCl night-time variation depends only on this reaction. The result of this analysis points towards a value of the rate constant within the range of the JPL 2006 recommendation and the upper uncertainty limit of the JPL 2011 recommendation at 55 km.
  •  
18.
  • Lossow, Stefan, 1977, et al. (författare)
  • The SPARC water vapour assessment II: Profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
  • 2019
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:5, s. 2693-2732
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2 σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmv decade-1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.
  •  
19.
  • Sato, T.O., et al. (författare)
  • Strato-mesospheric ClO observations by SMILES : error analysis and diurnal variation
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:11, s. 2809-2825
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlorine monoxide (ClO) is the key species for anthropogenic ozone losses in the middle atmosphere. We observed ClO diurnal variations using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station, which has a non-sun-synchronous orbit. This includes the first global observations of the ClO diurnal variation from the stratosphere up to the mesosphere. The observation of mesospheric ClO was possible due to 10–20 times better signal-to-noise (S/N) ratio of the spectra than those of past or ongoing microwave/submillimeter-wave limb-emission sounders. We performed a quantitative error analysis for the strato- and mesospheric ClO from the Level-2 research (L2r) product version 2.1.5 taking into account all possible contributions of errors, i.e. errors due to spectrum noise, smoothing, and uncertainties in radiative transfer model and instrument functions. The SMILES L2r v2.1.5 ClO data are useful over the range from 0.01 and 100 hPa with a total error estimate of 10–30 pptv (about 10%) with averaging 100 profiles. The SMILES ClO vertical resolution is 3–5 km and 5–8 km for the stratosphere and mesosphere, respectively. The SMILES observations reproduced the diurnal variation of stratospheric ClO, with peak values at midday, observed previously by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite (UARS/MLS). Mesospheric ClO demonstrated an opposite diurnal behavior, with nighttime values being larger than daytime values. A ClO enhancement of about 100 pptv was observed at 0.02 to 0.01 hPa (about 70–80 km) for 50° N–65° N from January–February 2010. The performance of SMILES ClO observations opens up new opportunities to investigate ClO up to the mesopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy