SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sagonas Konstantinos Docent) "

Sökning: WFRF:(Sagonas Konstantinos Docent)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bygde, Stefan, 1980- (författare)
  • Static WCET Analysis Based on Abstract Interpretation and Counting of Elements
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In a real-time system, it is crucial to ensure that all tasks of the system holdtheir deadlines. A missed deadline in a real-time system means that the systemhas not been able to function correctly. If the system is safety critical, this canlead to disaster. To ensure that all tasks keep their deadlines, the Worst-CaseExecution Time (WCET) of these tasks has to be known. This can be done bymeasuring the execution times of a task, however, this is inflexible, time consumingand in general not safe (i.e., the worst-casemight not be found). Unlessthe task is measured with all possible input combinations and configurations,which is in most cases out of the question, there is no way to guarantee that thelongest measured time actually corresponds to the real worst case.Static analysis analyses a safe model of the hardware together with thesource or object code of a program to derive an estimate of theWCET. This estimateis guaranteed to be equal to or greater than the real WCET. This is doneby making calculations which in all steps make sure that the time is exactlyor conservatively estimated. In many cases, however, the execution time of atask or a program is highly dependent on the given input. Thus, the estimatedworst case may correspond to some input or configuration which is rarely (ornever) used in practice. For such systems, where execution time is highly inputdependent, a more accurate timing analysis which take input into considerationis desired.In this thesis we present a framework based on abstract interpretation andcounting of possible semantic states of a program. This is a general methodof WCET analysis, which is language independent and platform independent.The two main applications of this framework are a loop bound analysis and aparametric analysis. The loop bound analysis can be used to quickly find upperbounds for loops in a program while the parametric framework provides aninput-dependent estimation of theWCET. The input-dependent estimation cangive much more accurate estimates if the input is known at run-time.
  •  
2.
  • Wilhelmsson, Jesper (författare)
  • Efficient memory management for message-passing concurrency, Part I : Single-threaded execution
  • 2005
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Manual memory management is error prone. Some of the errors it causes, in particular memory leaks and dangling pointers, are hard to find. Manual memory management becomes even harder when concurrency enters the picture. It therefore gets more and more important to overcome the problems of manual memory management in concurrent software as the interest in these applications increases with the development of new, multi-threaded, hardware.To ease the implementation of concurrent software many programming languages these days come with automatic memory management and support for concurrency. This support, called the concurrency model of the language, comes in many flavors (shared data structures, message passing, etc). The performance and scalability of applications implemented using such programming languages depends on the concurrency model, the memory architecture, and the memory manager used by the language. It is therefore important to investigate how different memory architectures and memory management schemes affect the implementation of concurrent software and what performance tradeoffs are involved.This thesis investigates ways of efficiently implementing the memory architecture and memory manager in a concurrent programming language. The concurrency model which we explore is based on message passing with copying semantics. We start by presenting the implementation of three different memory architectures for concurrent software and give a detailed characterization of their pros and cons regarding message passing and efficiency in terms of memory management. The issue examined is whether to use private memory for all processes in a program or if there may be benefits in sharing all or parts of the memory. In one of the architectures looked at, called hybrid, a static analysis called message analysis is used to guide the allocation of message data.Because the hybrid architecture is the enabling technology for a scalable multi-threaded implementation, we then focus on the hybrid architecture and investigate how to manage the memory using different garbage collection techniques. We present pros and cons of these techniques and discuss their characteristics and their performance in concurrent applications. Finally our experiences from turning the garbage collector incremental are presented. The effectiveness of the incremental collector is compared to the non-incremental version. On a wide range of benchmarks, the incremental collector we present is able to sustain high mutator utilization (about 80% during collection cycles) at a low cost.This work is implemented in an industrial-strength implementation of the concurrent functional programming language Erlang. Our eventual goal is to use the hybrid architecture and the incremental garbage collector as the basis for an efficient multi-threaded implementation of Erlang. The work described in this thesis is a big step in that direction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy