SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sahlée Erik) "

Sökning: WFRF:(Sahlée Erik)

  • Resultat 1-50 av 103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Deliang, 1961, et al. (författare)
  • Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
  • 2020
  • Ingår i: Tellus Series B-Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is not only about changes in means of climatic variables such as temperature, precipitation and wind, but also their extreme values which are of critical importance to human society and ecosystems. To inspire the Swedish climate research community and to promote assessments of international research on past and future changes in extreme weather events against the global climate change background, the Earth Science Class of the Royal Swedish Academy of Sciences organized a workshop entitled 'Extreme weather events in a warming world' in 2019. This article summarizes and synthesizes the key points from the presentations and discussions of the workshop on changes in floods, droughts, heat waves, as well as on tropical cyclones and extratropical storms. In addition to reviewing past achievements in these research fields and identifying research gaps with a focus on Sweden, future challenges and opportunities for the Swedish climate research community are highlighted.
  •  
2.
  • Esters, Leonie, et al. (författare)
  • Non-local Impacts on Eddy-Covariance Air–Lake CO2 Fluxes
  • 2021
  • Ingår i: Boundary-layer Meteorology. - : Springer Nature. - 0006-8314 .- 1573-1472. ; 178:2, s. 283-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Inland freshwater bodies form the largest natural source of carbon to the atmosphere. To study this contribution to the atmospheric carbon cycle, eddy-covariance flux measurements at lake sites have become increasingly popular. The eddy-covariance method is derived for solely local processes from the surface (lake). Non-local processes, such as entrainment or advection, would add erroneous contributions to the eddy-covariance flux estimations. Here, we use four years of eddy-covariance measurements of carbon dioxide from Lake Erken, a freshwater lake in mid-Sweden. When the lake is covered with ice, unexpected lake fluxes were still observed. A statistical approach using only surface-layer data reveals that non-local processes produce these erroneous fluxes. The occurrence and strength of non-local processes depend on a combination of wind speed and distance between the instrumented tower and upwind shore (fetch), which we here define as the time over water. The greater the wind speed and the shorter the fetch, the higher the contribution of non-local processes to the eddy-covariance fluxes. A correction approach for the measured scalar fluxes due to the non-local processes is proposed and also applied to open-water time periods. The gas transfer velocity determined from the corrected fluxes is close to commonly used wind-speed based parametrizations.
  •  
3.
  • Golub, Malgorzata, et al. (författare)
  • Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs
  • 2023
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2 based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2 flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2 emissions had an average of 25% (range 3%-58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2 flux variability were delineated through mutual information analysis. Sample analysis of CO2 fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2 fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.
  •  
4.
  • Gutiérrez-Loza, Lucía, 1989-, et al. (författare)
  • Evaluating the effect of precipitation on air-sea CO2 exchange using eddy covariance measurements
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The air-sea exchange of carbon dioxide (CO2) is modulated by processes controlling the physical and biogeochemical characteristics of the upper layer of the ocean. One such process is precipitation, which is known to alter the surface layer of the ocean via rain-induced turbulence, deposition of dissolved CO2, and through changes of the temperature, salinity, and chemical composition of the surface waters (i.e. dilution effects). Even though great advances have been made in the understanding of these mechanisms, and their impact on the regional and global air-sea CO2 fluxes from laboratory experiments and numerical models, the effect of rain and other types of precipitation has seldom been studied using field data. In this study, we use eddy covariance based  measurements of air-sea CO2 flux along with in-situ precipitation data from the Östergarnsholm station in the central Baltic Sea, to evaluate the effect of precipitation on the gas exchange. The results show that most types of precipitation enhance the CO2 transport when the flux is positive, i.e. from the ocean to the atmosphere, in particular during high wind-speed conditions. Negative fluxes, on the other hand, are less affected by precipitation. Snow, and mixed precipitation of rain with snow, induce the greatest increase on the exchange rate, while smaller droplets like drizzle cause smaller enhancement. According to the results presented here, not only the impact of rain, but all types of precipitation, should be accounted for in the air-sea CO2 flux estimates, even in regions where precipitation rates are low. At high latitudes, accounting for these effects, in particular the effect of snow and other solid types of precipitations, might be essential to constrain regional CO2 flux estimates. 
  •  
5.
  • Gutiérrez Loza, Lucia, et al. (författare)
  • Measurement of air-sea methane fluxes in the Baltic Sea using the eddy covariance method
  • 2019
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) is the second-most important greenhouse gas in the atmosphere having a significant effect on global climate. The ocean-particularly the coastal regions-have been recognized to be a net source of CH4, however, the constraints on temporal and spatial resolution of CH4 measurements have been the limiting factor to estimate the total oceanic contributions. In this study, the viability of micrometeorological methods for the analysis of CH4 fluxes in the marine environment was evaluated. We present 1 year of semi-continuous eddy covariance measurements of CH4 atmospheric dry mole fractions and air-sea CH4 flux densities at the Ostergarnsholm station at the east coast of the Gotland Island in the central Baltic Sea. The mean annual CH4 flux density was positive, indicating that the region off Gotland is a net source of CH4 to the atmosphere with monthly mean flux densities ranging between -0.1 and 36 nmol m(-2)s(-1). Both the air-water concentration gradient and the wind speed were found to be crucial parameters controlling the flux. The results were in good agreement with other measurements in the Baltic Sea reported in the MEMENTO database. Our results suggest that the eddy covariance technique is a useful tool for studying CH4 fluxes and improving the understanding of air-sea gas exchange processes with high-temporal resolution. Potentially, the high resolution of micrometeorological data can increase the understanding of the temporal variability and forcing processes of CH4 flux.
  •  
6.
  • Gutiérrez Loza, Lucia, et al. (författare)
  • On physical mechanisms enhancing air-sea CO2 exchange
  • 2022
  • Ingår i: Biogeosciences. - : European Geosciences Union (EGU). - 1726-4170 .- 1726-4189. ; 19:24, s. 5645-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing uncertainties in the air–sea CO2 flux calculations is one of the major challenges when addressing the oceanic contribution in the global carbon balance. In traditional models, the air–sea CO2 flux is estimated using expressions of the gas transfer velocity as a function of wind speed. However, other mechanisms affecting the variability in the flux at local and regional scales are still poorly understood. The uncertainties associated with the flux estimates become particularly large in heterogeneous environments such as coastal and marginal seas. Here, we investigated the air–sea CO2 exchange at a coastal site in the central Baltic Sea using nine years of eddy covariance measurements. Based on these observations we were able to capture the temporal variability of the air–sea CO2 flux and other parameters relevant for the gas exchange. Our results show that a wind-based model with similar pattern to those developed for larger basins and open sea condition can, on average, be a good approximation for k. However, in order to reduce the uncertainty associated to these averages and produce reliable short-term k estimates, additional physical processes must be considered. Using a normalized gas transfer velocity, we identified conditions associated to enhanced exchange (large k values). During high and intermediate wind speeds (above 6–8 m s−1),conditions on both sides of the air–water interface were found to be relevant for the gas exchange. Our findings further suggest that at such relatively high wind speeds, sea spray is an efficient mechanisms for air–sea CO2 exchange. During low wind speeds (<6 m s−1), water-side convection was found to be a relevant control mechanism. The effect of both sea spray and water-side convection on the gas exchange showed a clear seasonality with positive fluxes (winter conditions) being the most affected.
  •  
7.
  • Hallgren, Christoffer, et al. (författare)
  • Classification and properties of non-idealized coastal wind profiles - an observational study
  • 2022
  • Ingår i: Wind Energy Science. - : Copernicus Publications. - 2366-7443 .- 2366-7451. ; 7:3, s. 1183-1207
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-idealized wind profiles frequently occur over the Baltic Sea and are important to take into consideration for offshore wind power, as they affect not only the power production but also the loads on the structure and the behavior of the wake behind the turbine. In this observational study, we classified non-idealized profiles as the following wind profiles having negative shear in at least one part of the lidar wind profile between 28 and 300 m: low-level jets (with a local wind maximum in the profile), profiles with a local minimum and negative profiles. Using observations spanning over 3 years, we show that these non-idealized profiles are common over the Baltic Sea in late spring and summer, with a peak of 40 % relative occurrence in May. Negative profiles (in the 28-300 m layer) mostly occurred during unstable conditions, in contrast to low-level jets that primarily occurred in stable stratification. There were indications that the strong shear zone of low-level jets could cause a relative suppression of the variance for large turbulent eddies compared to the peak of the velocity spectra, in the layer below the jet core. Swell conditions were found to be favorable for the occurrence of negative profiles and profiles with a local minimum, as the waves fed energy into the surface layer, resulting in an increase in the wind speed from below.
  •  
8.
  •  
9.
  • Högström, Ulf, et al. (författare)
  • Surface Stress over the Ocean in Swell-Dominated Conditions during Moderate Winds
  • 2015
  • Ingår i: Journal of the Atmospheric Sciences. - 0022-4928 .- 1520-0469. ; 72:12, s. 4777-4795
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric and surface wave data from several oceanic experiments carried out on the Floating Instrument Platform(FLIP) and the Air–Sea Interaction Spar (ASIS) have been analyzed with the purpose of identifying swell-related effects on the surface momentum exchange during near-neutral atmospheric conditions and wind-following or crosswind seas. All data have a pronounced negative maximum in uw cospectra centered at the frequency of the dominant swell np, meaning a positive contribution to the stress. A similar contribution at this frequency is also obtained for the corresponding crosswind cospectrum. The magnitude of the cospectral maximum is shown to be linearly related to the square of the orbital motion, being equal to , where Hsd is the swell-significant wave height, the effect tentatively being due to strong correlation between the surface component of the orbital motion and the pattern of capillary waves over long swell waves.A model for prediction of the friction velocity  from measurements of Hsd, np, and the 10-m wind speed U10 is formulated and tested against an independent dataset of ~400 half-hour measurements during swell, giving good result.The model predicts that the drag coefficient CD, which is traditionally modeled as a function of U10 alone (e.g., the COARE algorithm), becomes strongly dependent on the magnitude of the swell factor  and that CD can attain values several times larger than predicted by wind speed–only models. According to maps of the global wave climate, conditions leading to large effects are likely to be widespread over the World Ocean.
  •  
10.
  • Högström, Ulf, et al. (författare)
  • The Transition from Downward to Upward Air–Sea Momentum Flux in Swell-Dominated Light Wind Conditions
  • 2018
  • Ingår i: Journal of the Atmospheric Sciences. - 0022-4928 .- 1520-0469. ; 75:8, s. 2579-2588
  • Tidskriftsartikel (refereegranskat)abstract
    • Fifteen hours of consecutive swell data from the experiment Flux, État de la Mer, et Télédétection en Condition de Fetch Variable (FETCH) in the Mediterranean show a distinct upward momentum flux. The characteristics are shown to vary systematically with wind speed. A hysteresis effect is found for wave energy of the wind-sea waves when represented as a function of wind speed, displaying higher energy during decaying winds compared to increasing winds. For the FETCH measurements, the upward momentum transfer regime is found to begin for wind speeds lower than about U 5 4ms21 . For the lowest observed wind speeds U , 2.4 m s21 , the water surface appears to be close to dynamically smooth. In this range almost all the upward momentum flux is accomplished by the peak in the cospectrum between the vertical and horizontal components of the wind velocity. It is demonstrated that this contribution in turn is linearly related to the swell significant wave height Hsd in the range 0.6 , Hsd , 1.4 m. For Hsd , 0.6 m, the contribution is zero in the present dataset but may depend on the swell magnitude in other situations. It is speculated that the observed upward momentum flux in the smooth regime, which is so strongly related to the cospectral peak at the dominant swell frequency, might be caused by the recirculation mechanism found by Wen and Mobbs in their numerical simulation of laminar flow of a nonlinear progressive wave at low wind speed
  •  
11.
  •  
12.
  • Nilsson, Erik, 1983-, et al. (författare)
  • Influences of surface gravity waves on atmospheric boundary layer structure and fluxes
  • 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Atmospheric models are strongly dependent on the turbulent exchange of momentum and scalars at the air-sea interface. Surface gravity waves have been shown to influence the exchange process, but these effects are often poorly represented or neglected in weather and climate models. A better understanding of the mechanisms behind wave-related turbulent exchange can be reached from direct measurements and high-resolution numerical modelling (Sullivan et. al. 2008, 2010). Using large eddy simulations (LES) and field measurements we investigate and show how surface gravity waves affect atmospheric boundary layer turbulence and fluxes. Previous studies have shown that the atmospheric response to fast, long waves propagating away from their generation area, referred to as swell, can become different from conventional shear-driven boundary layers influenced by atmospheric stability. We have here used the LES model from Sullivan et. al. (2008) to examine the dynamics of the marine boundary layer under influence of swell waves (Nilsson et. al. 2012). This model has the capability to resolve a moving sinusoidal wave at its lower boundary and is used to study the atmospheric influence caused by an idealized dominant swell wave and its effects on turbulent flux. The modelling results show that wave-induced motions leads to altered mean wind profiles and increased turbulence length scales in dominant swell conditions. Also turbulent fluxes are affected by the presence of swell. For a more detailed understanding of the mechanisms we investigate vertical momentum flux using a multiresolution analysis technique (Vickers and Mahrt 2003). Preliminary results indicate that upward directed momentum flux is often closely related to the vertical wind variance. In most atmospheric situations this upward momentum flux is however compensated by a larger downward directed momentum flux related to shear-induced streamwise oriented wind streaks. In low wind speed situations with dominant swell waves such motion are however modulated and in extreme cases the upward directed momentum flux can even exceed the downward directed flux, causing a net upward Reynolds-averaged flux. In addition to numerical simulations we have carried out multiresolution analysis on measured turbulence signals for different atmospheric conditions to characterise air-sea interaction during swell in comparison to other boundary layer processes that are also present over flat terrain and growing sea conditions. Field measurements from several sites are used in the analysis; among them is data from our main observational site Östergarnsholm located on a small flat island in the Baltic Sea. This site has been used in several previous studies of air-sea interaction, coastal meteorology and studies of the atmospheric response to surface waves. The analysis of the measurements support the LES results in that upward momentum flux is related to the vertical wind variance and in low wind speed situations this can dominate the total net flux. For growing sea conditions with higher wind speed and stronger shear the net flux becomes downward, however, due to a much larger downward directed flux component.   One of our long-term research goals is to better understand the role of surface wave processes, then include such effects in large-scale atmospheric models, and evaluate the sensitivity of the atmospheric circulation on such modelling attempts. Similar to the effects of wave-induced mixing in the presence of non-breaking surface waves for the oceanic circulation (Qiao et. al. 2004), we find that swell waves may be responsible for increased mixing of the atmospheric boundary layer. This wave-induced mixing can in near-neutral conditions with swell act to cause similarity to more convective atmospheric states (Nilsson et. al. 2012). A simplified parameterization with an inclusion of a wave-field dependent mixing length formulation has therefore been suggested and implemented in a regional climate model coupled to a wave model (Rutgersson et. al. 2012). In conclusion we believe a better understanding of surface wave processes is needed to build model parameterizations for the marine atmospheric boundary layer. We have therefore continued with new analysis of field measurements and LES using a multiresolution technique to investigate the atmospheric response to the surface waves that separates the atmospheric and oceanic boundary layers. This new investigation reveals wave signatures in the atmospheric variables and distinguishes some of the effects that surface gravity waves causes for the near surface turbulence structure and fluxes.   Nilsson, E. O., A. Rutgersson, A.-S. Smedman and P. P. Sullivan. 2012. Convective boundary layer structure in the presence of wind-following swell. Quarterly Journal of Royal Meteorological Society. In press Rutgersson, A., E. Nilsson and R. Kumar. 2012. Introducing surface waves in a coupled wave-atmosphere regional climate model: Impact on atmospheric mixing length. Journal of Geophysical Research – Oceans. Accepted Sullivan P., J. McWilliams and T. Hristov. 2010. Large-Eddy Simulations of high wind marine boundary layers above a spectrum of resolved waves. 19th AMS symposium on Boundary Layers and Turbulence. Sullivan PP, JB. Edson, T. Hristov and JC. McWilliams. 2008. Large-Eddy Simulations and Observations of Atmospheric Marine Boundary Layers above Nonequilibrium Surface Waves. J. Atmos. Sci. 65:1225-1244. Qiao F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia and J. Ma, 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett. 31, Ll1303. Vickers D., and Mahrt L. 2003. The Cospectral Gap and Turbulent Flux Calculations. Journal of Atmospheric and Oceanic Technology 20: 660-672.
  •  
13.
  •  
14.
  • Nilsson, Erik, 1983-, et al. (författare)
  • Turbulent momentum flux characterisation using extended multiresolution analysis
  • 2014
  • Ingår i: Quarterly Journal of the Royal Meteorological Society. - : Wiley. - 0035-9009 .- 1477-870X. ; 140, s. 1715-1728
  • Tidskriftsartikel (refereegranskat)abstract
    • The variability of turbulent momentum flux in neutral and unstable atmospheric boundary layers is characterised by analysing surface-layer measurements and data from large-eddy simulations (LES). The method involves multiresolution (MR) decomposition of vertical wind and advected variables into eddy fluctuations on different scales. It provides a measure of the amount of flux variability that stems from same-scale correlations and from combinations of different scale eddy fluctuations. Combining two analysis methods enabled MR component cospectra to be introduced in order to study the contribution of downward and upward flux on different scales. These component cospectra were used to investigate at which scales most of the upward and downward momentum flux occurs. By using MR spectra, cospectra, and flow visualisation this investigation provides insights into turbulence structure and fluxes in neutral and unstable stratification. It is shown that most of the flux variability in the lower part of the boundary layer can be characterised as a combination of larger scale streamwise elongated horizontal wind streaks and smaller scale vertical wind fluctuations. These streaks are found to account for a large part of downward momentum flux at relatively large, energy-containing scales. Most of the upward momentum flux is found to occur at smaller scales. This can be interpreted as showing that upward momentum flux in these conditions is caused by the generation of smaller scale secondary motions when larger scale turbulence elements break down and dissipate. Differences in the height dependence of turbulence structure and momentum flux for neutral and unstably stratified conditions are also investigated and related to the existence of wind streaks and horizontal rolls in these different conditions.
  •  
15.
  •  
16.
  • Rutgersson, Anna, 1971-, et al. (författare)
  • Using land-based stations for air–sea interaction studies
  • 2020
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Informa UK Limited. - 0280-6495 .- 1600-0870. ; 72:1, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ measurements representing the marine atmosphere and air-sea interaction are taken at ships, buoys, stationary moorings and land-based towers, where each observation platform has structural restrictions. Air-sea fluxes are often small, and due to the limitations of the sensors, several corrections are applied. Land-based towers are convenient for long-term observations, but one critical aspect is the representativeness of marine conditions. Hence, a careful analysis of the sites and the data is necessary. Based on the concept of flux footprint, we suggest defining flux data from land-based marine micrometeorological sites in categories depending on the type of land influence:1. CAT1: Marine data representing open sea,2. CAT2: Disturbed wave field resulting in physical properties different from open sea conditions and heterogeneity of water properties in the footprint region, and3. CAT3: Mixed land-sea footprint, very heterogeneous conditions and possible active carbon production/consumption.Characterization of data would be beneficial for combined analyses using several sites in coastal and marginal seas and evaluation/comparison of properties and dynamics. Aerosol fluxes are a useful contribution to characterizing a marine micrometeorological field station; for most conditions, they change sign between land and sea sectors. Measured fluxes from the land-based marine station Ostergarnsholm are used as an example of a land-based marine site to evaluate the categories and to present an example of differences between open sea and coastal conditions. At the Ostergarnsholm site the surface drag is larger for CAT2 and CAT3 than for CAT1 when wind speed is below 10m/s. The heat and humidity fluxes show a distinctive distinguished seasonal cycle; latent heat flux is larger for CAT2 and CAT3 compared to CAT1. The flux of carbon dioxide is large from the coastal and land-sea sectors, showing a large seasonal cycle and significant variability (compared to the open sea sector). Aerosol fluxes are partly dominated by sea spray emissions comparable to those observed at other open sea conditions.
  •  
17.
  •  
18.
  •  
19.
  • Svensson, Nina, 1988-, et al. (författare)
  • A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface
  • 2017
  • Ingår i: Advances in Meteorology. - : Hindawi Limited. - 1687-9309 .- 1687-9317. ; 2017
  • Tidskriftsartikel (refereegranskat)abstract
    • Streaky structures of narrow (8-9 km) high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30-80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.
  •  
20.
  • Wu, Lichuan, et al. (författare)
  • A review of surface swell waves and their role in air-sea interactions
  • 2024
  • Ingår i: Ocean Modelling. - : Elsevier. - 1463-5003 .- 1463-5011. ; 190
  • Forskningsöversikt (refereegranskat)abstract
    • Swell waves, characterized by the long wavelength components generated by distant weather systems or storms, exert a significant influence on various air-sea interaction processes, thereby impacting weather and climate systems. Over recent decades, substantial progress has been achieved in comprehending the dynamics of swell waves and their implications for air-sea interactions. This paper presents a comprehensive review of advancements and key findings concerning surface swell waves and their interactions with the atmosphere. It encompasses a range of topics, including wave growth theory, the effects of swell waves on air-sea momentum, heat, and mass fluxes, as well as their influence on atmospheric turbulence and mixed layer processes. The most important characteristics of the swell impact (where it differs from wind sea conditions) are the wave-induced upward component of the surface stress leading to alteration of total surface stress, generation of a low-level wind maxima or changed wind profile and change of scale and behaviour of turbulence properties (turbulence kinetic energy and integral length scale). Furthermore, the paper explores the modelling of swell dissipation, the integration of swell influences in weather and climate models, and the broader climatic implications of surface swell waves. Despite notable advances in understanding swell processes, persistent knowledge gaps remain, underscoring the need for further research efforts, which are outlined in the paper.
  •  
21.
  • Andersson, Andreas, et al. (författare)
  • Air-sea gas transfer in high Arctic fjords
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:5, s. 2519-2526
  • Tidskriftsartikel (refereegranskat)abstract
    • In Arctic fjords and high-latitude seas, strong surface cooling dominates during a large part of the year, generating water-side convection (w*w) and enhanced turbulence in the water. These regions are key areas for the global carbon cycle; thus, a correct description of their air-sea gas exchange is crucial. CO2-data were measured via the eddy covariance technique in marine Arctic conditions and reveal that water-side convection has a major impact on the gas transfer velocity. This is observed even at wind speeds as high as 9 m s-1, where convective motions are generally thought to be suppressed by wind-driven turbulence. The enhanced air-sea transfer of CO2 caused by water-side convection nearly doubled the CO2uptake, after scaled to open sea conditions the contribution from  to the CO2 flux remained as high as 34%; this phenomenon is expected to be highly important for the total carbon uptake in marine Arctic areas.
  •  
22.
  • Andersson, Andreas, 1981-, et al. (författare)
  • Enhanced air-sea exchange of CO2 over a high Arctic fjord during unstable very close to neutral conditions
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Eddy covariance measurements over a high Arctic fjord reveals higher turbulent levels than normally found from classical surface layer theory. When conditions become unstable close to neutral i.e. -0.15<z/L< 0 the exchange coefficient for sensible heat, CH, is significantly enhanced compared to traditional parameterizations. Inspection of co-spectra of vertical wind (w) and temperature (T), wT show how a high frequency peak starts to develop around f≈1 Hz as z/L>-0.15, simultaneously quadrant analysis displays how the contribution from downdrafts to the vertical flux of temperature and CO2 increases. These findings are the signature of the evolving UVCN (Unstable Very Close to Neutral) regime, previously shown to enhance the vertical fluxes of temperature and humidity. In this study we show that the additional small scale turbulence related to these conditions also has the potential to enhance the vertical flux of CO2. Different to the vertical flux of temperature and humidity wq, the enhancement are not solely explained by the different properties of the air from aloft. We suggest that a part of the observed increase in CO2 flux and gas transfer velocity of CO2 when z/L> -0.1, also is generated by the increased levels of , causing higher levels of water-side turbulence. In winter the Arctic marine boundary layer is characterized by unstable stratification and during the nearly two months of measurements presented here as much as 36% of all data where associated to conditions with z/L in the range -0.15<z/L< 0.
  •  
23.
  • Andersson, Andreas, et al. (författare)
  • Enhanced Air–Sea Exchange of Heat and Carbon Dioxide Over a High Arctic Fjord During Unstable Very-Close-to-Neutral Conditions
  • 2019
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 170:3, s. 471-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Eddy-covariance measurements made in the marine atmospheric boundary layer above a high Arctic fjord (Adventfjorden, Svalbard) are analyzed. When conditions are unstable, but close to neutral −0.1 < z/L < 0, where z is the height, and L is the Obukhov length, the exchange coefficient for sensible heat CH is significantly enhanced compared with that expected from classical surface-layer theory. Cospectra of the vertical velocity component (w) and temperature (T) reveal that a high-frequency peak develops at f ≈ 1 Hz for z/L > − 0.15. A quadrant analysis reveals that the contribution from downdrafts to the vertical heat flux increases as conditions become close to neutral. These findings are the signature of the evolving unstable very-close-to-neutral (UVCN) regime previously shown to enhance the magnitude of sensible and latent heat fluxes in the marine surface layer over the Baltic Sea. Our data reveal the significance of the UVCN regime for the vertical flux of the carbon dioxide (CO2) concentration (C). The cospectrum of w and C clearly shows how the high-frequency peak grows in magnitude for z/L > − 0.15, while the high-frequency peak dominates for z/L > − 0.02. As found for the heat flux, the quadrant analysis of the CO2 flux shows a connection between the additional small-scale turbulence and downdrafts from above. In contrast to the vertical fluxes of sensible and latent heat, which are primarily enhanced by the very different properties of the air from aloft (colder and drier) during UVCN conditions, the increase in the air–sea transfer of CO2 is possibly a result of the additional small-scale turbulence causing an increase in the water-side turbulence. The data indicate an increase in the gas-transfer velocity for CO2 for z/L > − 0.15 but with a large scatter. During the nearly 2 months of continuous measurements (March–April 2013), as much as 36% of all data are associated with the stability range −0.15 < z/L < 0, suggesting that the UVCN regime is of significance in the wintertime Arctic for the air–sea transfer of heat and possibly also CO2.
  •  
24.
  • Andersson, Andreas, et al. (författare)
  • Using a High-Frequency Fluorescent Oxygen Probe in Atmospheric Eddy Covariance Applications
  • 2014
  • Ingår i: Journal of Atmospheric and Oceanic Technology. - : American Meteorological Society. - 0739-0572 .- 1520-0426. ; 31:11, s. 2498-2511
  • Tidskriftsartikel (refereegranskat)abstract
    • During the years 2010-13, atmospheric eddy covariance measurement of oxygen was performed at the marine site Ostergarnsholm in the Baltic Sea. The fast response optode Microx TX3 was used with two different types of tapered sensors. In spite of the increased lifetime, the optical isolated sensor is limited by the slower response time and is unsuitable for ground-based eddy covariance measurements. The sensor without optical isolation shows a -2/3 slope within the inertial subrange and attains sufficient response time and precision to be used in air-sea applications during continuous periods of 1-4 days. Spectral and cospectral analysis shows oxygen measured with the nonoptical isolated sensor to follow the same shape as for CO2 and water vapor when normalized. The sampling rate of the Microx TX3 is 2Hz; however, the sensor was found to have a limited response and resolution, yielding a flux loss in the frequency range f > 0.3Hz. This can be corrected for by applying cospectral similarity simultaneously using measurements of latent heat as the reference signal. On average the magnitude of the cospectral correction added 20% to the uncorrected oxygen flux during neutral atmospheric stratification.
  •  
25.
  • Andersson, Andreas, et al. (författare)
  • Using eddy covariance to estimate air-sea gas transfer velocity for oxygen
  • 2016
  • Ingår i: Journal of Marine Systems. - : Elsevier. - 0924-7963 .- 1879-1573. ; 159, s. 67-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Air-sea gas transfer velocity for O2 is calculated using directly measured fluxes with the eddy covariance technique. It is a direct method and is frequently used to determine fluxes of heat, humidity, and CO2, but has not previously been used to estimate transfer velocities for O2, using atmospheric eddy covariance data. The measured O2 fluxes are upward directed, in agreement with the measured air-sea gradient of the O-2 concentration, and opposite to the direction of the simultaneously measured CO2 fluxes. The transfer velocities estimated from measurements are compared with prominent wind speed parameterizations of the transfer velocity for CO2 and O2, previously established from various measurement techniques. Our result indicates stronger wind speed dependence for the transfer velocity of O2 compared to CO2 starting at intermediate wind speeds. This stronger wind speed dependence appears to coincide with the onset of whitecap formation in the flux footprint and the strong curvature of a cubic wind -dependent function for the transfer velocity provides the best fit to the data. Additional data using the measured O2 flux and an indirect method (based on the Photosynthetic Quotient) to estimate oxygen concentration in water, support the stronger wind dependence for the transfer velocity of O2 O-2 to CO2.
  •  
26.
  •  
27.
  • Denfeld, Blaize A., et al. (författare)
  • Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice cover dynamics
  • 2015
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 20:6, s. 679-692
  • Tidskriftsartikel (refereegranskat)abstract
    • Global carbon dioxide (CO2) emission estimates from inland waters commonly neglect the ice-cover season. To account for CO2 accumulation below ice and consequent emissions into the atmosphere at ice-melt we combined automatically-monitored and manually- sampled spatially-distributed CO2 concentration measurements from a small boreal ice-covered lake in Sweden. In early winter, CO2 accumulated continuously below ice, whereas, in late winter, CO2 concentrations remained rather constant. At ice-melt, two CO2 concentration peaks were recorded, the first one reflecting lateral CO2 transport within the upper water column, and the second one reflecting vertical CO2 transport from bottom waters. We estimated that 66%–85% of the total CO2 accumulated in the water below ice left the lake at ice-melt, while the remainder was stored in bottom waters. Our results imply that CO2 accumulation under ice and emissions at ice-melt are more dynamic than previously reported, and thus need to be more accurately integrated into annual CO2 emission estimates from inland waters.
  •  
28.
  •  
29.
  •  
30.
  • Gutiérrez Loza, Lucia, et al. (författare)
  • Air–sea CO2 exchange in the Baltic Sea—A sensitivity analysis of the gas transfer velocity
  • 2021
  • Ingår i: Journal of Marine Systems. - : Elsevier. - 0924-7963 .- 1879-1573. ; 222
  • Tidskriftsartikel (refereegranskat)abstract
    • Air–sea gas fluxes are commonly estimated using wind-based parametrizations of the gas transfer velocity. However, neglecting gas exchange forcing mechanisms – other than wind speed – may lead to large uncertainties in the flux estimates and the carbon budgets, in particular, in heterogeneous environments such as marginal seas and coastal areas. In this study we investigated the impact of including relevant processes to the air–sea CO2 flux parametrization for the Baltic Sea. We used six parametrizations of the gas transfer velocity to evaluate the effect of precipitation, water-side convection, and surfactants on the net CO2 flux at regional and sub-regional scale. The differences both in the mean CO2 fluxes and the integrated net fluxes were small between the different cases. However, the implications on the seasonal variability were shown to be significant. The inter-annual and spatial variability were also found to be associated with the forcing mechanisms evaluated in the study. In addition to wind, water-side convection was the most relevant parameter controlling the air–sea gas exchange at seasonal and inter-annual scales. The effect of precipitation and surfactants seemed negligible in terms of the inter-annual variability. The effect of water-side convection and surfactants resulted in a reduction of the downward fluxes, while precipitation was the only parameter that resulted in an enhancement of the net uptake in the Baltic Sea.
  •  
31.
  • Gutiérrez-Loza, Lucía (författare)
  • Mechanisms controlling air-sea gas exchange in the Baltic Sea
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon plays a major role in physical and biogeochemical processes in the atmosphere, the biosphere, and the ocean. CO2 and CH4 are two of the most common carbon-containing compounds in the atmosphere, also recognized as major greenhouse gases. The exchange of CO2 and CH4 between the ocean and the atmosphere is an essential part of the global carbon cycle. The exchange is controlled by the air–sea concentration gradient and by the efficiency of the transfer processes. The lack of knowledge about the forcing mechanisms affecting the exchange of these climate-relevant gases is a major source of uncertainty in the estimation of the global oceanic contributions. Quantifying and understanding the air–sea exchange processes is essential to constrain the estimates and to improve our knowledge about the current and future climate. In this thesis, the mechanisms controlling the air–sea gas exchange in the Baltic Sea are investigated.The viability of micrometeorological techniques for CH4 monitoring in a coastal environment is evaluated. One year of semi-continuous measurements of air–sea CH4 fluxes using eddy covariance measurements suggests that the method is useful for CH4 flux estimations in marine environments. The measurements allow long-term monitoring at high frequency rates, thus, capturing the temporal variability of the flux. The region off Gotland is a net source of CH4, with both the air–sea concentration gradient and the wind as controlling mechanisms.A sensitivity analysis of the gas transfer velocity is performed to evaluate the effect of the forcing mechanisms controlling the air–sea CO2 exchange in the Baltic Sea. This analysis shows that the spatio-temporal variability of CO2 fluxes is strongly modulated by water-side convection, precipitation, and surfactants. The effect of these factors is relevant both at regional and global scales, as they are not included in the current budget estimates.
  •  
32.
  • Gutiérrez-Loza, Lucía, 1989- (författare)
  • On mechanisms controlling air-sea gas exchange
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon is essential to the Earth’s system functioning, playing a major role in physical and biogeochemical processes in the atmosphere, the terrestrial biosphere, and the oceans. The concentration of carbon-based greenhouse gases in the atmosphere, such as carbon dioxide (CO2) and methane (CH4), has been increasing since the industrial era. Therefore, assessing the redistribution of these greenhouse gases between the Earth’s reservoirs has become essential for understanding the current climate system and modelling future climate scenarios.The oceans are a component of the global carbon cycle, and their role as sinks and sources of greenhouse gases has significant implications for the Earth’s climate. The gas exchange between the atmosphere and the ocean is driven by the concentration difference in these two reservoirs. However, the turbulent processes in the layers adjacent to the ocean surface control the efficiency of the transport.This thesis investigates mechanisms controlling the air–sea gas exchange using direct measurements of CO2 and CH4 fluxes from the Östergarnsholm station in the Central Baltic Sea. The gas exchange of both gases is found to have a strong variability at time scales from sub-hourly to inter-annual. The region is found to be a net source of CH4, with both the concentration gradient and wind as controlling mechanisms. In the case of the CO2 fluxes, the variability is strongly modulated by local processes such as sea spray and water-side convection, as well as precipitation. Interestingly, an asymmetric effect is observed, with these processes enhancing the upward transport of CO2 but not the downward flux. Furthermore, a model-based sensitivity analysis of the gas transfer velocity is performed to evaluate the effect of the forcing mechanisms on the air-sea gas exchange at a regional scale. The results show that water-side convection, precipitation, and surfactants strongly modulate the spatio-temporal variability of the CO2 fluxes in the Baltic Sea.
  •  
33.
  • Hallgren, Christoffer, et al. (författare)
  • A Single-Column Method to Identify Sea and Land Breezes in Mesoscale-Resolving NWP Models
  • 2023
  • Ingår i: Weather and forecasting. - : American Meteorological Society. - 0882-8156 .- 1520-0434. ; 38:6, s. 1025-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most prominent mesoscale phenomena in the coastal zone is the sea-breeze/land-breeze circula-tion. The pattern and its implications for the weather in coastal areas are well described, and with mesoscale-resolving operational NWP models the circulation can be captured. In this study, a straightforward method to identify sea and land breezes based on the change in wind direction in the column above a grid point on the coastline is presented. The method was tested for southern Sweden using archived output from the HARMONIE-AROME model with promising results, describing both the seasonal and diurnal cycles well. In areas with a complex coastline, such as narrow straits, the concept of the land-sea breeze becomes less clear, and several ways to address this problem for the suggested method are discussed. With an operational index of the sea and land breezes, the forecaster can better understand and express the weather situation and add value for people in the coastal zone. Further, the indices can be used to study systematic biases in the model and to create climatologies of the sea and land breezes.
  •  
34.
  • Hallgren, Christoffer, et al. (författare)
  • Brief communication : On the definition of the low-level jet
  • 2023
  • Ingår i: Wind Energy Science. - : Copernicus Publications. - 2366-7443 .- 2366-7451. ; 8:11, s. 1651-1658
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-level jets (LLJs) are examples of non-logarithmic wind speed profiles affecting wind turbine power production, wake recovery, and structural/aerodynamic loading. However, there is no consensus regarding which definition should be applied for jet identification. In this study we argue that a shear definition is more relevant to wind energy than a falloff definition. The shear definition is demonstrated and validated through the development of a European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERA5) LLJ climatology for six sites. Identification of LLJs and their morphology, frequency, and intensity is critically dependent on the (i) vertical window of data from which LLJs are extracted and (ii) the definition employed.
  •  
35.
  • Hallgren, Christoffer, 1989- (författare)
  • Characterization and forecasting of wind conditions over the Baltic Sea
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To meet the increasing demand of sustainably produced electricity, the total number of installed wind turbines is rapidly increasing globally. Although onshore installations are dominating, offshore wind power is taking a greater share of the market every year. Offshore, the wind is generally stronger than onshore and with the possibility to construct bigger turbines the electricity yield is also greater per turbine. Furthermore, it is possible to build larger wind farms offshore than onshore. The Baltic Sea is an area of high interest to many stakeholders and a major expansion of offshore wind power is expected in the region in the coming decades.As the Baltic Sea is a semi-enclosed sea with relatively short distances to the coast from anywhere in the basin, there are many mesoscale meteorological phenomena occurring, affecting the shape of the wind profile and the preconditions for wind power. This thesis focuses on these wind profiles, utilizing multi-year lidar observations and state-of-the-art numerical models. Wind profiles with a local maximum, i.e., low-level jets, are of special interest as they are frequently occurring over the Baltic Sea. These non-ideal wind speed profiles are characterized in terms of frequency and effects on turbulent properties, and the best way to define the low-level jets is investigated. Furthermore, the change in wind direction with height is addressed and a new index to automatically identify sea and land breeze circulations in operational weather prediction models is created. Finally, different post-processing methods to improve short-term forecasts of wind power production are compared and a recommendation on how to combine the methods depending on the weather situation is presented. Altogether, the research in this thesis adds a piece to the puzzle in reaching further understanding of the Baltic Sea wind conditions. The findings will be useful also in other coastal areas in siting, farm layout, and load analysis as well as in creating improved power production forecasts for offshore wind turbines.
  •  
36.
  • Hallgren, Christoffer, et al. (författare)
  • Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses : A Tight Race over the Baltic Sea
  • 2020
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • With an increasing interest in offshore wind energy, focus has been directed towards large semi-enclosed basins such as the Baltic Sea as potential sites to set up wind turbines. The meteorology of this inland sea in particular is strongly affected by the surrounding land, creating mesoscale conditions that are important to take into consideration when planning for new wind farms. This paper presents a comparison between data from four state-of-the-art reanalyses (MERRA2, ERA5, UERRA, NEWA) and observations from LiDAR. The comparison is made for four sites in the Baltic Sea with wind profiles up to 300 m. The findings provide insight into the accuracy of reanalyses for wind resource assessment. In general, the reanalyses underestimate the average wind speed. The average shear is too low in NEWA, while ERA5 and UERRA predominantly overestimate the shear. MERRA2 suffers from insufficient vertical resolution, which limits its usefulness in evaluating the wind profile. It is also shown that low-level jets, a very frequent mesoscale phenomenon in the Baltic Sea during late spring, can appear in a wide range of wind speeds. The observed frequency of low-level jets is best captured by UERRA. In terms of general wind characteristics, ERA5, UERRA, and NEWA are similar, and the best choice depends on the application.
  •  
37.
  • Hallgren, Christoffer, et al. (författare)
  • Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
  • 2024
  • Ingår i: Wind Energy Science. - : Copernicus Publications. - 2366-7443 .- 2366-7451. ; 9:4, s. 821-840
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the wind speed at heights relevant for wind power are sparse, especially offshore, but with emerging aid from advanced statistical methods, it may be possible to derive information regarding wind profiles using surface observations. In this study, two machine learning (ML) methods are developed for predictions of (1) coastal wind speed profiles and (2) low-level jets (LLJs) at three locations of high relevance to offshore wind energy deployment: the US Northeastern Atlantic Coastal Zone, the North Sea, and the Baltic Sea. The ML models are trained on multiple years of lidar profiles and utilize single-level ERA5 variables as input. The models output spatial predictions of coastal wind speed profiles and LLJ occurrence. A suite of nine ERA5 variables are considered for use in the study due to their physics-based relevance in coastal wind speed profile genesis and the possibility to observe these variables in real-time via measurements. The wind speed at 10  ma.s.l. and the surface sensible heat flux are shown to have the highest importance for both wind speed profile and LLJ predictions. Wind speed profile predictions output by the ML models exhibit similar root mean squared error (RMSE) with respect to observations as is found for ERA5 output. At typical hub heights, the ML models show lower RMSE than ERA5 indicating approximately 5 % RMSE reduction. LLJ identification scores are evaluated using the symmetric extremal dependence index (SEDI). LLJ predictions from the ML models outperform predictions from ERA5, demonstrating markedly higher SEDIs. However, optimization utilizing the SEDI results in a higher number of false alarms when compared to ERA5.
  •  
38.
  •  
39.
  • Hallgren, Christoffer, et al. (författare)
  • The smoother the better? : A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
  • 2021
  • Ingår i: Wind Energy Science. - : Copernicus Publications. - 2366-7443 .- 2366-7451. ; 6:5, s. 1205-1226
  • Tidskriftsartikel (refereegranskat)abstract
    • With a rapidly increasing capacity of electricity generation from wind power, the demand for accurate power production forecasts is growing. To date, most wind power installations have been onshore and thus most studies on production forecasts have focused on onshore conditions. However, as offshore wind power is becoming increasingly popular it is also important to assess forecast quality in offshore locations. In this study, forecasts from the high-resolution numerical weather prediction model AROME was used to analyze power production forecast performance for an offshore site in the Baltic Sea. To improve the AROME forecasts, six post-processing methods were investigated and their individual performance analyzed in general as well as for different wind speed ranges, boundary layer stratifications, synoptic situations and in low-level jet conditions. In general, AROME performed well in forecasting the power production, but applying smoothing or using a random forest algorithm increased forecast skill. Smoothing the forecast improved the performance at all wind speeds, all stratifications and for all synoptic weather classes, and the random forest method increased the forecast skill during low-level jets. To achieve the best performance, we recommend selecting which method to use based on the forecasted weather conditions. Combining forecasts from neighboring grid points, combining the recent forecast with the forecast from yesterday or applying linear regression to correct the forecast based on earlier performance were not fruitful methods to increase the overall forecast quality.
  •  
40.
  • Hallgren, Christoffer, et al. (författare)
  • The winds are twisting: analysis of strong directional shear across the rotor plane using coastal lidar measurements and ERA5
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The change of wind direction with height (the directional shear) affects both the power production from a wind turbine, wake effects and aerodynamic loading. In this study, a climatology of the relative occurrence of strong directional shear over Scandinavia is created using 43 years of hourly ERA5 data covering the height range of a modern wind turbine and at wind speeds of operation. It is shown that strong directional shear (≥15° over the rotor) is occurring 20-30% of the time over land and 10-25% of the time over the extended Baltic Sea. The height of the atmospheric boundary-layer and the wind speed at hub height are identified as the most important predictors for strong directional shear, with low boundary-layer heights and weak winds being the main causes. Associated with this, a strong land-sea seasonality is observed. Further, ERA5 is validated against lidar soundings from two coastal sites, both indicating a major underestimation in the distribution of the directional shear in ERA5. Especially in strongly stratified boundary-layers ERA5 struggles, with 25% of the data having errors exceeding 24° and 28° for Östergarnsholm and Utö respectively.
  •  
41.
  • Högström, Ulf, et al. (författare)
  • Air–Sea Interaction Features in the Baltic Sea and at a Pacific Trade-Wind Site : An Inter-comparison Study
  • 2013
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 147:1, s. 139-163
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s−1 < U 10 < 7 m s−1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s−1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s−1 < U 10 < 7 m s−1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s−1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.
  •  
42.
  • Högström, Ulf, et al. (författare)
  • Momentum fluxes and wind gradients in the marine boundary layer : a multi platform study
  • 2008
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 13:6, s. 475-502
  • Tidskriftsartikel (refereegranskat)abstract
    • During five autumn weeks, measurements of turbulent fluxes were obtained in the Baltic Sea at three levels on a 30-m tower and two levels on an ASIS buoy 4 km from the tower together with profiles of wind and temperature. Wave data and SST were obtained from ASIS. In the mean, momentum fluxes measured on the tower and on ASIS during onshore winds agree closely. Dimensionless wind gradients phi(m)(z/L) for (i) stable conditions are linear in z/L (L is the Obukhov length); (ii) unstable, growing sea conditions are much smaller than predicted by 'standard' equations, due to an indirect effect of the boundary layer height. Individual wind profiles extrapolated from ASIS to tower by integration of phi(m)(z/L) deviate by about 0.5 m s(-1) from measured values, but corresponding mean profiles agree well for all levels from 1.18 m to 30 m. This random variation in the wind field is shown to be related to inherent dynamics of the atmospheric surface layer.
  •  
43.
  • Högström, Ulf, et al. (författare)
  • The atmospheric boundary layer during swell – a field study and interpretation of the turbulent kinetic energy budget for high wave ages
  • 2009
  • Ingår i: Journal of the Atmospheric Sciences. - 0022-4928 .- 1520-0469. ; 66:9, s. 2764-2779
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the turbulent kinetic energy (TKE) budget for five slightly unstable cases with swell has been performed based on measurements of   mechanical production, buoyancy production, turbulent transport, and   dissipation at five levels over the sea, from 2.5 to 26 m. The time   rate of change and advection of TKE were found to be small, so the TKE   residual is interpreted as an estimate of the pressure transport term   (T-p). In two cases with high wave age, the T-p term is a gain at all   heights. For three cases with smaller wave age, T-p is a loss in the   TKE budget below 5-10 m and a gain for greater heights, where the   decrease is exponential, thus showing the combined effects of swell   waves and a range of waves traveling slower than the wind. The TKE   budget for a case with growing sea but similar wind speed and stability   as some of the swell cases has T-p close to zero at all heights. It is   shown that the observed characteristic wind profile with either a   low-level maximum in the 5-10-m range or a distinct "knee'' at that   height is an effect of the T-p term.
  •  
44.
  • Kokic, Jovana, 1987- (författare)
  • Gas Exchange over Aquatic Interfaces and its Importance for Greenhouse Gas Emission
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aquatic ecosystems play a substantial role in global cycling of carbon (C), despite covering only about 4% of the earth surface. They emit large amounts of greenhouse gases (GHG) to the atmosphere, comparable to the amount of C stored annually in terrestrial ecosystems. In addition, C can be buried in lake sediments. Headwater systems are located at the interface of the terrestrial and aquatic environment, and are first in line to process terrestrial C and throughout its journey through the aquatic continuum. The uncertainties in global estimates of aquatic GHG emissions are largely related to these headwater systems, as they are highly variable in time and space, and underrepresented in global assessments. The overall aim of this thesis was therefore to study GHG exchange between sediment, water and air in headwater systems, from both an ecosystem perspective and at the small scale of physical drivers of gas exchange.This thesis demonstrates that carbon dioxide (CO2) emission from headwater systems, especially streams, was the main pathway of C loss from surface waters from a lake catchment. Of the total aquatic CO2-emission of the catchment, 65% originated from stream systems that covered only 0.1% of the total catchment area. The gas transfer velocity (k) was the main driver of stream CO2-emission, but there was a high variability in k on small spatial scales (meters). This variability may have implications for upscaling GHG emissions, especially when using scaled k estimates. Lake sediments only contributed 16% to total lake C emission, but in reality, sediment C emission is probably even lower because experimentally determined sediment C flux returns high estimates that are biased since artificially induced turbulence enhances C flux rates beyond in-situ conditions. When sediment C flux is estimated in-situ, in natural bottom water turbulence conditions, flux rates were lower than those estimated experimentally.Conclusively, this thesis shows that GHG emissions from small aquatic ecosystems are dominant over other aquatic C fluxes and that our current knowledge regarding the physical processes controlling gas exchange from different small aquatic systems is limited, implying an inherent uncertainty of GHG emission estimates from small aquatic ecosystems.
  •  
45.
  •  
46.
  • Kokic, Jovana, et al. (författare)
  • High spatial variability of gas transfer velocity in streams revealed by turbulence measurements
  • 2018
  • Ingår i: Inland Waters. - : Taylor & Francis. - 2044-2041 .- 2044-205X. ; 8:4, s. 461-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams are major sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere, but current large-scale estimates are associated with high uncertainties because knowledge concerning the spatiotemporal control on stream emissions is limited. One of the largest uncertainties derives from the choice of gas transfer velocity (k(600)), which describes the physical efficiency of gas exchange across the water-atmosphere interface. This study therefore explored the variability in k(600 )and subsequent CO2 and CH4 emission rates within and across streams of different stream order (SO). We conducted, for the first time in streams, direct turbulence measurements using an acoustic Doppler velocimeter (ADV) to determine the spatial variability in k(600) across a variety of scales with a consistent methodology. The results show high spatial variability in k(600) and corresponding CO2 and CH4 emissions at small spatial scales, both within stream reaches and across SO, especially during high discharge. The k(600) was positively related to current velocity and Reynolds number. By contrast, no clear relationship was found between k(600) and specific stream characteristics such as width and depth, which are parameters often used in empirical models of k(600). Improved understanding of the small-scale variability in the physical properties along streams, especially during high discharge, is therefore an important step to reduce the uncertainty in existing gas transfer models and emissions for stream systems. The ADV method was a useful tool for revealing spatial variability in this work, but it needs further development. We recommend that future studies conduct measurements over shorter time periods (e.g., 10-15 min instead of 40 min) and at more sites across the reach of interest, and thereby derive more reliable mean-reach k(600) as well as more information about controls on the spatial variability in k(600).
  •  
47.
  • Kokic, Jovana, et al. (författare)
  • Low sediment-water gas exchange in a small boreal lake
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 121:9, s. 2493-2505
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal lake sediments are carbon sources by producing CO2. CO2 flux from sediments is partly controlled by turbulence in the water column, which is not given the same attention as CO2production rates in current estimates of CO2 fluxes from sediments. We quantified the in situ CO2flux across the sediment-water interface in a small (0.07 km2) lake in Sweden by measuring the in situ O2 flux with the Eddy Correlation (EC) method and using the apparent respiratory quotient (CO2 production:O2 consumption) derived from sediment incubations. We demonstrate that median CO2 flux estimated by EC was ~70% smaller than estimated by sediment incubations with artificial water mixing (1.0 × 10−2 and 3.6 × 10−2 µmol C m−2 s−1, respectively). Additionally, we show that inducing artificial mixing of supernatant water in the incubation experiment has a positive effect on observed fluxes, enhancing CO2 flux by ~30% compared to not mixing supernatant water. We suggest that the difference between the methods is due to the strong artificial water mixing in sediment incubations compared to the turbulent mixing in this small lake. Additionally, low O2 supply to sediment aerobic heterotrophic microbes during extended periods of low water currents can inhibit respiration and thus CO2 production. These findings suggest that the sediment contribution to total lake CO2 emission might currently be overestimated for small boreal lakes. Care should be taken when upscaling sediment CO2 flux derived from incubation experiments to entire basins of small lakes, as incubation experiments are unlikely to accurately mimic in situ bottom water currents and gas exchange.
  •  
48.
  • Li, Huidong, et al. (författare)
  • A sensitivity study of the WRF model in offshore wind modeling over the Baltic Sea
  • 2021
  • Ingår i: Geoscience Frontiers. - : Elsevier. - 1674-9871. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate wind modeling is important for wind resources assessment and wind power forecasting. To improve the WRF model configuration for the offshore wind modeling over the Baltic Sea, this study performed a sensitivity study of the WRF model to multiple model configurations, including domain setup, grid resolution, sea surface temperature, land surface data, and atmosphere-wave coupling. The simulated offshore wind was evaluated against LiDAR observations under different wind directions, atmospheric stabilities, and sea status. Generally, the simulated wind profiles matched observations, despite systematic underestimations. Strengthening the forcing from the reanalysis data through reducing the number of nested domains played the largest role in improving wind modeling. Atmosphere-wave coupling further improved the simulated wind, especially under the growing and mature sea conditions. Increasing the vertical resolution, and updating the sea surface temperature and the land surface information only had a slight impact, mainly visible during very stable conditions. Increasing the horizontal resolution also only had a slight impact, most visible during unstable conditions. Our study can help to improve the wind resources assessment and wind power forecasting over the Baltic Sea.
  •  
49.
  • Müller, Roger A., et al. (författare)
  • Hourly, daily, and seasonal variability in the absorption spectra of chromophoric dissolved organic matter in a eutrophic, humic lake
  • 2014
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 119:10, s. 1985-1998
  • Tidskriftsartikel (refereegranskat)abstract
    • The short-term (hourly and daily) variation in chromophoric dissolved organic matter (CDOM) in lakes is largely unknown. We assessed the spectral characteristics of light absorption by CDOM in a eutrophic, humic shallow mixed lake of temperate Sweden at a high-frequency (30 min) interval and during a full growing season (May to October). Physical time series, such as solar radiation, temperature, wind, and partial pressures of carbon dioxide in water and air, were measured synchronously. We identified a strong radiation-induced summer CDOM loss (25 to 50%) that developed over 4 months, which was accompanied by strong changes in CDOM absorption spectral shape. The magnitude of the CDOM loss exceeded subhourly to daily variability by an order of magnitude. Applying Fourier analysis, we demonstrate that variation in CDOM remained largely unaffected by rapid shifts in weather, and no apparent response to in-lake dissolved organic carbon production was found. In autumn, CDOM occasionally showed variation at hourly to daily time scales, reaching a maximum daily coefficient of variation of 15%. We suggest that lake-internal effects on CDOM are quenched in humic lake waters by dominating effects associated with imported CDOM and solar exposure. Since humic lake waters belong to one of the most abundant lake types on Earth, our results have important implications for the understanding of global CDOM cycling.
  •  
50.
  • Norman, Maria, 1973- (författare)
  • Air-Sea Fluxes of CO2 : Analysis Methods and Impact on Carbon Budget
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon dioxide (CO2) is an important greenhouse gas, and the atmospheric concentration of CO2 has increased by more than 100 ppm since prior to the industrial revolution.  The global oceans are considered an important sink of atmospheric CO2, since approximately one third of the anthropogenic emissions are absorbed by the oceans. To be able to model the global carbon cycle and the future climate, it is important to have knowledge of the processes controlling the air-sea exchange of CO2. In this thesis, measurements as well as a model is used in order to increase the knowledge of the exchange processes.The air-sea flux of CO2 is estimated from high frequency measurements using three methods; one empirical method, and two methods with a solid theoretical foundation. The methods are modified to be applicable for various atmospheric stratifications, and the agreement between methods is good in average.A new parameterization of the transfer velocity (the rate of transfer across the air-sea interface), is implemented in a Baltic Sea model. The new parameterization includes also the mechanism of water-side convection. The impact of including the new parameterization is relatively small due to feedback processes in the model. The new parameterization is however more representative for flux calculations using in-situ measurement or remote sensing products. When removing the feedback to the model, the monthly average flux increases by up to 20% in some months, compared to when water-side convection is not included.The Baltic Sea carbon budget was estimated using the Baltic Sea model, and the Baltic Sea was found to be a net sink of CO2. This is consistent with some previous studies, while contradictory to others. The dissimilarity between studies indicates the difficulty in estimating the carbon budget mainly due to variations of the CO2 uptake/release in time and space. Local variations not captured by the model, such as coastal upwelling, give uncertainties to the model. Coastal upwelling can alter the uptake/release of CO2 in a region by up to 250%. If upwelling would be included in the model, the Baltic Sea might be considered a smaller sink of CO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 103
Typ av publikation
tidskriftsartikel (64)
konferensbidrag (15)
annan publikation (10)
doktorsavhandling (8)
licentiatavhandling (4)
rapport (1)
visa fler...
forskningsöversikt (1)
visa färre...
Typ av innehåll
refereegranskat (67)
övrigt vetenskapligt/konstnärligt (32)
populärvet., debatt m.m. (2)
Författare/redaktör
Sahlée, Erik (95)
Rutgersson, Anna (42)
Rutgersson, Anna, 19 ... (23)
Högström, Ulf (18)
Ivanell, Stefan, 197 ... (9)
Körnich, Heiner (7)
visa fler...
Andersson, Andreas (6)
Wallin, Marcus, 1979 ... (4)
Weyhenmeyer, Gesa A. (4)
Sobek, Sebastian (4)
Rutgersson, Anna, Pr ... (4)
Bastviken, David (3)
Bergström, Hans (3)
Johansson, Cecilia (2)
Falck, Eva (2)
Sjöblom, Anna (2)
Kljun, Natascha (2)
Pettersson, H (1)
Zhang, Peng (1)
Tranvik, Lars J. (1)
Linderholm, Hans W., ... (1)
Lundin, Erik (1)
Chen, Deliang, 1961 (1)
Lindroth, Anders (1)
Sjolte, Jesper (1)
Björck, Svante (1)
Seneviratne, S. I. (1)
Smith, Michael (1)
Holst, Jutta (1)
Omstedt, Anders (1)
Omstedt, Anders, 194 ... (1)
Nilsson, Douglas (1)
Schenk, Frederik (1)
Zhang, Qiong (1)
May, Wilhelm (1)
Allard, Bert, 1945- (1)
Nilsson, Erik (1)
Tengberg, Anders, 19 ... (1)
Hall, Per, 1954 (1)
Gaillard, Marie-José ... (1)
Hjalmarsson, Sofia, ... (1)
Falck, E (1)
Andersson, Andreas, ... (1)
Omar, Abdirahaman (1)
Sjöblom, Anna, Profe ... (1)
Stigebrandt, Anders, ... (1)
Kjellström, Erik (1)
Klemedtsson, Leif, 1 ... (1)
Sachs, Torsten (1)
Moat, Ben (1)
visa färre...
Lärosäte
Uppsala universitet (102)
Mittuniversitetet (5)
Sveriges Lantbruksuniversitet (4)
Göteborgs universitet (3)
Umeå universitet (2)
Stockholms universitet (2)
visa fler...
Linköpings universitet (2)
Lunds universitet (2)
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (102)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (98)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy