SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salawitch R. J.) "

Sökning: WFRF:(Salawitch R. J.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anderson, D. C., et al. (författare)
  • Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAM-Chem and the CCMI Models
  • 2017
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X. ; 122:20, s. 11201-11226
  • Tidskriftsartikel (refereegranskat)abstract
    • Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from similar to 500 parts per trillion by volume (pptv) near the surface to similar to 75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by similar to 33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (similar to 15%) in the lower troposphere.
  •  
2.
  • Kleinböhl, A., et al. (författare)
  • Constraints for the photolysis rate and the equilibrium constant of ClO-dimer from airborne and balloon-borne measurements of chlorine compounds
  • 2014
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 119:11, s. 6916--6937-6937
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze measurements of ClO across the terminator taken by the Airborne Submillimeter Radiometer (ASUR) in the activated vortices of the Arctic winters of 1995/1996, 1996/1997, and 1999/2000 to evaluate the plausibility of various determinations of the ClO-dimer photolysis cross section and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. We use measured ClO during sunlit conditions to estimate total active chlorine (ClOx). As the measurements suggest nearly full chlorine activation in winter 1999/2000, we compare ClOx estimates based on various photolysis frequencies of ClO-dimer with total available inorganic chlorine (Cly), estimated from an N2O-Cly correlation established by a balloon-borne MkIV interferometer measurement. Only ClO-dimer cross sections leading to the fastest photolysis frequencies in the literature (including the latest evaluation by the Jet Propulsion Laboratory) give ClOx mixing ratios that overlap with the estimated range of available Cly. Slower photolysis rates lead to ClOx values that are higher than available Cly. We use the ClOx calculated from sunlit ClO measurements to estimate ClO in darkness based on different equilibrium constants, and compare it with ASUR ClO measurements before sunrise at high solar zenith angles. Calculations with equilibrium constants published in recent evaluations of the Jet Propulsion Laboratory give good agreement with observed ClO mixing ratios. Equilibrium constants leading to a higher ClO/ClOx ratio in darkness yield ClO values that tend to exceed observed abundances. Perturbing the rates for the ClO + BrO reaction in a manner that increases OClO formation and decreases BrCl formation leads to lower ClO values calculated for twilight conditions after sunset, resulting in better agreement with ASUR measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy