SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salazar Alvarez German) "

Sökning: WFRF:(Salazar Alvarez German)

  • Resultat 1-50 av 120
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bernal, Ximena E., et al. (författare)
  • Empowering Latina scientists
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  •  
4.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Agthe, Michael, 1983- (författare)
  • Crystallization on the Mesoscale : Self-Assembly of Iron Oxide Nanocubes into Mesocrystals
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes.We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.
  •  
6.
  • Agthe, Michael, et al. (författare)
  • Dynamic growth modes of ordered arrays and mesocrystals during drop-casting of iron oxide nanocubes
  • 2014
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry (RSC). - 1466-8033. ; 16:8, s. 1443-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth modes of self-assembled mesocrystals and ordered arrays from dispersions of iron oxide nanocubes with a mean edge length of 9.6 nm during controlled solvent removal have been investigated with a combination of visible light video microscopy, atomic force microscopy and scanning electron microscopy. Mesocrystals with translational and orientational order of sizes up to 10 mu m are formed spontaneously during the final, diffusion-controlled, drop-casting stage when the liquid film is very thin and the particle concentration is high. Convection-driven deposition of ordered nanocube arrays at the edge of the drying droplet is a manifestation of the so called coffee-ring effect. Dendritic growth or fingering of rapidly growing arrays of ordered nanocubes could also be observed in a transition regime as the growth front moves from the initial three-phase contact line towards the centre of the original droplet.
  •  
7.
  • Agthe, Michael, et al. (författare)
  • Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops
  • 2016
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 16:11, s. 6838-6843
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.
  •  
8.
  • Ahangar Zonouzi, S., et al. (författare)
  • Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field
  • 2018
  • Ingår i: Experimental Thermal and Fluid Science. - : Elsevier. - 0894-1777 .- 1879-2286. ; 91, s. 155-165
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the effects of applying magnetic field on hydrodynamics and heat transfer of Fe3O4/water magnetic nanofluid flowing inside a vertical tube have been studied experimentally. The applied magnetic field was resulted from quadrupole magnets located at different axial positions along the tube length. The variations of the local heat transfer coefficient and also the pressure drop of the ferrofluid flow along the length of the tube by applying the magnetic quadrupole field have been investigated for different Reynolds numbers. The obtained experimental results show maximum enhancements of 23.4%, 37.9% and 48.9% in the local heat transfer coefficient for the magnetic nanofluid with 2 vol% Fe3O4 in the presence of the quadrupole magnets located at three different axial installation positions for the Reynolds number of 580 and the relative increase in total pressure drop by applying the magnetic field is about 1% for Re = 580. The increase of the heat transfer coefficient is due to the radial magnetic force toward the heated wall generated by magnetic quadrupole field acting over the ferrofluid flowing inside the tube so that the velocity of the ferrofluid in the vicinity of the heated wall is increased. It is also observed that the enhancement of heat transfer coefficient by applying magnetic quadrupole is decreased with increasing the Reynolds number.
  •  
9.
  • Amombo Noa, Francoise M., et al. (författare)
  • A Hexagon Based Mn(II) Rod Metal-Organic Framework – Structure, SF6 Gas Sorption, Magnetism and Electrochemistry
  • 2023
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry. - 1359-7345 .- 1364-548X.
  • Tidskriftsartikel (refereegranskat)abstract
    • A manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6-: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2/g, rapid uptake of sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
  •  
10.
  • Amombo Noa, Francoise Mystere, 1988, et al. (författare)
  • A hexagon based Mn(ii) rod metal-organic framework - structure, SF 6 gas sorption, magnetism and electrochemistry
  • 2023
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 59:15, s. 2106-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • A manganese(ii) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6−: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g−1, rapid uptake of sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
  •  
11.
  • Anil, Athira, et al. (författare)
  • Effect of pore mesostructure on the electrooxidation of glycerol on Pt mesoporous catalysts
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:31, s. 16570-16577
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol is a renewable chemical that has become widely available and inexpensive due to the increased production of biodiesel. Noble metal materials have shown to be effective catalysts for the production of hydrogen and value-added products through the electrooxidation of glycerol. In this work we develop three platinum systems with distinct pore mesostructures, e.g., hierarchical pores (HP), cubic pores (CP) and linear pores (LP); all with high electrochemically active surface area (ECSA). The ECSA-normalized GEOR catalytic activity of the systems follows HPC > LPC > CPC > commercial Pt/C. Regarding the oxidation products, we observe glyceric acid as the main three-carbon product (3C), with oxalic acids as the main two-carbon oxidation product. DFT-based theoretical calculations support the glyceraldehyde route going through tartronic acid towards oxalic acid and also help understanding why the dihydroxyacetone (DHA) route is active despite the absence of DHA amongst the observed oxidation products.
  •  
12.
  • Aulin, Christian, et al. (författare)
  • High strength flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability
  • 2012
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 4:20, s. 6622-6628
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel, technically and economically benign procedure to combine vermiculite nanoplatelets with nanocellulose fibre dispersions into functional biohybrid films is presented. Nanocellulose fibres of 20 nm diameters and several micrometers in length are mixed with high aspect ratio exfoliated vermiculite nanoplatelets through high-pressure homogenization. The resulting hybrid films obtained after solvent evaporation are stiff (tensile modulus of 17.3 GPa), strong (strength up to 257 MPa), and transparent. Scanning electron microscopy (SEM) shows that the hybrid films consist of stratified nacre-like layers with a homogenous distribution of nanoplatelets within the nanocellulose matrix. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials and pure nanocellulose films showing an oxygen permeability of 0.07 cm3 μm m-2 d-1 kPa -1 at 50% relative humidity. The oxygen permeability of the hybrid films can be tuned by adjusting the composition of the films. Furthermore, the water vapor barrier properties of the biohybrid films were also significantly improved by the addition of nanoclay. The unique combination of excellent oxygen barrier behavior and optical transparency suggests the potential of these biohybrid materials as an alternative in flexible packaging of oxygen sensitive devices such as thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in large volume packaging applications.
  •  
13.
  • Bender, Philipp, et al. (författare)
  • Shape-induced superstructure formation in concentrated ferrofluids under applied magnetic fields
  • 2022
  • Ingår i: Journal of applied crystallography. - : INT UNION CRYSTALLOGRAPHY. - 0021-8898 .- 1600-5767. ; 55:6, s. 1613-1621
  • Tidskriftsartikel (refereegranskat)abstract
    • The field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for similar to 9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles. On the basis of the short interparticle distances found here, oriented attachment, i.e. a face-to-face arrangement of the nanocubes, is likely. The unusual field dependence of the interparticle correlations suggests a field-induced structural rearrangement.
  •  
14.
  • Bergström, Lennart, et al. (författare)
  • Mesocrystals in Biominerals and Colloidal Arrays
  • 2015
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 48:5, s. 1391-1402
  • Forskningsöversikt (refereegranskat)abstract
    • Mesocrystals, which originally was a term to designate superstructures of nanocrystals with a common crystallographic orientation, have now evolved to a materials concept. The discovery that many biominerals are mesocrystals generated a large research interest, and it was suggested that mesocrystals result in better mechanical performance and optical properties compared to single crystalline structures. Mesocrystalline biominerals are mainly found in spines or shells, which have to be mechanically optimized for protection or as a load-bearing skeleton. Important examples include red coral and sea urchin spine as well as bones. Mesocrystals can also be formed from purely synthetic components. Biomimetic mineralization and assembly have been used to produce mesocrystals, sometimes with complex hierarchical structures. Important examples include the fluorapatite mesocrystals with gelatin as the structural matrix, and mesocrystalline calcite spicules with impressive strength and flexibility that could be synthesized using silicatein protein fibers as template for calcium carbonate deposition. Self-assembly of nanocrystals can also result in mesocrystals if the nanocrystals have a well-defined size and shape and the assembly conditions are tuned to allow the nanoparticles to align crystallographically. Mesocrystals formed by assembly of monodisperse metallic, semiconducting, and magnetic nanocrystals are a type of colloidal crystal with a well-defined structure on both the atomic and mesoscopic length scale. Mesocrystals typically are hybrid materials between crystalline nanoparticles and interspacing amorphous organic or inorganic layers. This structure allows to combine disparate materials like hard but brittle nanocrystals with a soft and ductile amorphous material, enabling a mechanically optimized structural design as realized in the sea urchin spicule. Furthermore, rnesocrystals can combine the properties of individual nanocrystals like the optical quantum size effect, surface plasmon resonance, and size dependent magnetic properties with a mesostructure and morphology tailored for specific applications. Indeed, mesocrystals composed of crystallographically aligned polyhedral or rodlike nanocrystals with anisotropic properties can be materials with strongly directional properties and novel collective emergent properties. An additional advantage of mesocrystals is that they can combine the properties of nanoparticles with a structure on the micro- or macroscale allowing for much easier handling. In this Account, we propose that mesocrystals are defined as a nanostructured material with a defined long-range order on the atomic scale, which can be inferred from the existence of an essentially sharp wide-angle diffraction pattern (with sharp Bragg peaks) together with clear evidence that the material consists of individual nanoparticle building units. We will give several examples of mesocrystals and discuss the structural characteristics for biominerals, biomimetic materials, and colloidal arrays of nanocrystals. The potential of the mesocrystal materials concept in other areas will be discussed and future developments envisioned.
  •  
15.
  • Boily, Jean-Francois, et al. (författare)
  • Thin Water Films at Multifaceted Hematite Particle Surfaces
  • 2015
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 31:48, s. 13127-13137
  • Tidskriftsartikel (refereegranskat)abstract
    • Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (alpha-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an adsorption regime (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a condensation regime (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanodusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, mu-OH, mu(3)-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal eta-(OH2)(2) sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of similar to 8 Torr (similar to 40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the adsorption regime. These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of mu-OH and mu(3)-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic controls on water water interactions occurring in the condensation regime. Water water hydrogen bond populations are greatest on the (001) face, and decrease in importance in the order (001) > (012) approximate to (110) > (014) >> (100). Simulations of a single (similar to 5 nm x similar to 6 nm x similar to 6 nm) nanometric hematite particle terminated by the (001), (110), (012), and (100) faces also highlighted the key roles that sites at particle edges play in interconnecting thin water films grown along contiguous crystallographic faces. Hydroxo water hydrogen bond populations showed that edges were the preferential loci of binding. These simulations also suggested that equilibration times for water binding at edges were slower than on crystallographic faces. In this regard, edges, and by extension roughened surfaces, are expected to play commanding roles in the stabilization of thin water films. Thus, in focusing on the properties of nanometric-thick water layers at hematite surfaces, this study revealed the nature of interactions between water and multifaced particle surfaces. Our results pave the way for furthering our understanding of mineral-thin water film interfacial structure and reactivity on a broader range of materials.
  •  
16.
  • Campos dos Santos, Egon, et al. (författare)
  • Efficient Screening of Bi-Metallic Electrocatalysts for Glycerol Valorization
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 398
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol is a byproduct of biodiesel production and, as such, it is of limited economic value. By means of electrooxidation, glycerol can be used as a feedstock for scalable hydrogen production, in addition to conversion to value-added products. The development of novel and efficient catalytic electrode materials for the anodic side of the reaction is a key towards a hydrogen-based energy economy. In the present study, a computational screening protocol combining DFT, scaling relations, and microkinetic modeling allows for a rational selection of novel catalysts that can deliver efficient glycerol electrooxidation, low cost of production, and environmental sustainability. Activity and chemical selectivity towards hydrogen production on pure metal catalysts is discussed in terms of volcano-shaped plots. We find that the selectivity in the glycerol oxidation reaction is influenced by a different energy landscape when in the presence of water and best classified by a comparison of O-H and C-H bond-breaking barriers. In addition, we screened 3570 bi-metallic catalysts in the AB (L1(0)) and A(3)B (L1(2)) ordered structures for activity, stability, price, and toxicity. By filtering based on the criteria for toxicity, resistance to oxidation, miscibility, and price, we have identified 5 L1(0) structured catalysts (AgPd, AuPd, PtSb, CuPt, and AgPt) and 20 L1(2) catalysts (Ga3Ta, In3Ta, Ir3W, Ir3Mo, Cu3Pt, Ir3Ta, Ir3Re, Pd3Bi, Pd3Cu, Pd3W, Pd3Co, Pd3Sn, Pd3Mo, Pd3Ag, Pd3Ga, Pd3Ta, Au3Ru, Pd3In, Au3Ir, and Pd3Au) that are all predicted to show high activity. We also identify an additional 37 L1(0) and 92 L1(2) structured electrocatalysts with an anticipated medium-high activity.
  •  
17.
  • Chen, Jianhong, 1993- (författare)
  • Biomass-derived nanoscopic catalysts for water treatment : Structure-property relationship investigation
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Green Chemistry has received widespread interest due to its capacity to meet environmental and economic objectives. The Twelve Principles were proposed to better perform Green Chemistry and have become the guideline for solving many environmental issues. Water contamination has become a major global challenge in the 21st century. Millions of people die from diseases caused by drinking contaminated water. Nitrate, metal ions and dye are the most frequent contaminants. Nitrate in drinking water, after ingestion, is reduced to nitrite by the gastrointestinal tract and threatens human health. Dye-polluted water is usually nonbiodegradable and poisonous: the main criticism is that it is harmful to human health and hampers the photosynthesis rate of aquatic life. Metal ions generally lead to biological and physiological complications when they bind to cellular macromolecules. Therefore, efficient and eco-friendly purification technology is pressing to provide solutions for water purification. This thesis is set out to investigate the electro-/photo- catalytical water purification techniques using different catalysts. Efficient nitrate electrochemical reduction was achieved by using NDC materials, and the active sites were determined with the help of a comprehensive solid-state NMR supported by theoretical calculation and DFT calculations. Furthermore, the photochemical dye degradation was performed using cellulose-based hybrid bio-inorganic catalysts. The intentional maintenance of the surface functional groups on cellulose-based materials can promote dye degradation performance and, most importantly, achieve simultaneous removal of heavy metal ions aside from photo dye degradation. Additionally, this thesis proposed two possible synthesis strategies to obtain electro-/photo- catalysts using cellulose-based materials as renewable resources. The Twelve Principles of Green Chemistry guided the optimization of the synthesis route and raw material selectivity. Notably, the low-temperature synthesis of hybrid photocatalysts maintained the surface functional groups and preserved the kinetic mechanism of contaminants' adsorption on bio-substrate.  This research is likely to contribute to a deeper understanding of renewable materials with green synthesis methods for catalysts targeting water contamination treatment.
  •  
18.
  • Diaz-Morales, Oscar, et al. (författare)
  • Catalytic effects of molybdate and chromate–molybdate films deposited on platinum for efficient hydrogen evolution
  • 2023
  • Ingår i: Journal of chemical technology and biotechnology (1986). - : Wiley. - 0268-2575 .- 1097-4660. ; 98:5, s. 1269-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Sodium chlorate (NaClO3) is extensively used in the paper industry, but its production uses strictly regulated highly toxic Na2Cr2O7 to reach high hydrogen evolution reaction (HER) Faradaic efficiencies. It is therefore important to find alternatives either to replace Na2Cr2O7 or reduce its concentration.RESULTS: The Na2Cr2O7 concentration can be significantly reduced by using Na2MoO4 as an electrolyte co-additive. Na2MoO4 in the millimolar range shifts the platinum cathode potential to less negative values due to an activating effect of cathodically deposited Mo species. It also acts as a stabilizer of the electrodeposited chromium hydroxide but has a minor effect on the HER Faradaic efficiency. X-ray photoelectron spectroscopy (XPS) results show cathodic deposition of molybdenum of different oxidation states, depending on deposition conditions. Once Na2Cr2O7 was present, molybdenum was not detected by XPS, as it is likely that only trace levels were deposited. Using electrochemical measurements and mass spectrometry we quantitatively monitored H2 and O2 production rates. The results indicate that 3 μmol L−1 Na2Cr2O7 (contrary to current industrial 10–30 mmol L−1) is sufficient to enhance the HER Faradaic efficiency on platinum by 15%, and by co-adding 10 mmol L−1 Na2MoO4 the cathode is activated while avoiding detrimental O2 generation from chemical and electrochemical reactions. Higher concentrations of Na2MoO4 led to increased oxygen production.CONCLUSION: Careful tuning of the molybdate concentration can enhance performance of the chlorate process using chromate in the micromolar range. These insights could be also exploited in the efficient hydrogen generation by photocatalytic water splitting and in the remediation of industrial wastewater. 
  •  
19.
  • Disch, Sabrina, et al. (författare)
  • Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes
  • 2011
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:4, s. 1651-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Grazing incidence small-angle scattering and electron microscopy have been used to show for the first time that nonspherical nanoparticles can assemble into highly ordered body-centered tetragonal mesocrystals. Energy models accounting for the directionality and magnitude of the van der Waals and dipolar interactions as a function of the degree of truncation of the nanocubes illustrated the importance of the directional dipolar forces for the formation of the initial nanocube clusters and the dominance of the van der Waals multibody interactions in the dense packed arrays.
  •  
20.
  • Disch, S., et al. (författare)
  • Spin excitations in cubic maghemite nanoparticles studied by time-of-flight neutron spectroscopy
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 89:6, s. 064402-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have determined the field dependence of collective magnetic excitations in iron oxide nanoparticles of cubic shape with 8.42(2) nm edge length and a narrow log normal size distribution of 8.2(2)% using time-of-flight neutron spectroscopy. The energy dependence of the uniform precession modes was investigated up to 5 T applied field and yields a Lande factor g = 2.05(2) as expected for maghemite (gamma-Fe2O3) nanoparticles. A large effective anisotropy field of B-A,B-eff = 0.45(16) T was determined, in excellent agreement with macroscopic measurements. This anisotropy is attributed to enhanced shape anisotropy in these monodisperse cubic nanoparticles. The combination of our results with macroscopic magnetization information provides a consistent view of the energy scales of superparamagnetic relaxation and collective magnetic excitations in magnetic nanoparticles.
  •  
21.
  • Disch, Sabrina, et al. (författare)
  • Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation
  • 2013
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 5:9, s. 3969-3975
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.
  •  
22.
  • Dish, Sabina, et al. (författare)
  • Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering
  • 2012
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14, s. 013025-
  • Tidskriftsartikel (refereegranskat)abstract
    • By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape-dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for similar to 9 nm nanospheres and similar to 8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles.
  •  
23.
  • Dresen, Dominique, et al. (författare)
  • Neither Sphere nor Cube-Analyzing the Particle Shape Using Small-Angle Scattering and the Superball Model
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:42, s. 23356-23363
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate characterization of the nanocrystal shape with high statistical relevance is essential for exploiting the strongly shapedependent properties of cuboidal nanoparticles toward applications. This work presents the development of a new small-angle scattering form factor based on the superball geometry. The superball quantifies the characteristic rounding of corners and edges of cuboidal nanoparticles with a single parameter. Applied to small-angle scattering data of sufficiently monodisperse nanoparticles, the superball form factor enables differentiation between the effects of extended particle size distribution and irregular particle shape. The quantitative application of the superball form factor is validated against microscopy data for a series of monodisperse nanoparticles and implemented into the user-friendly, open-source software Sasview.
  •  
24.
  • Esquivel-Pena, Vicente, et al. (författare)
  • Hybrids based on borate-functionalized cellulose nanofibers and noble-metal nanoparticles as sustainable catalysts for environmental applications
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 10:21, s. 12460-12468
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymeric supports from renewable resources such as cellulose nanomaterials are having a direct impact on the development of heterogenous sustainable catalysts. Recently, to increase the potentiality of these materials, research has been oriented towards novel functionalization possibilities. In this study, to increase the stability of cellulose nanofiber films as catalytic supports, by limiting the solubility in water, we report the synthesis of new hybrid catalysts (HC) based on silver, gold, and platinum nanoparticles, and the corresponding bimetallic nanoparticles, supported on cellulose nanofibers (CNFs) cross-linked with borate ions. The catalysts were prepared from metal precursors reduced by the CNFs in an aqueous suspension. Metal nanoparticles supported on CNFs with a spherical shape and a mean size of 9 nm were confirmed by TEM, XRD, and SAXS. Functionalized films of HC-CNFs were obtained by adding a borate solution as a cross-linking agent. Solid-state B-11 NMR of films with different cross-linking degrees evidenced the presence of four different boron species of which the bis-chelate is responsible for the cross-linking of the CNFs. Also, it may be concluded that the bis-chelate and the mono-chelates modify the microstructure of the film increasing the water uptake and enhancing the catalytic activity in the reduction of 4-nitrophenol.
  •  
25.
  • Estradé, S., et al. (författare)
  • Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis
  • 2012
  • Ingår i: Micron. - : Elsevier BV. - 0968-4328 .- 1878-4291. ; 43:1, s. 30-36
  • Forskningsöversikt (refereegranskat)abstract
    • The structural and chemical characterization of inverted bi-magnetic MnOx(antiferromagnetic)/MnOy(ferrimagnetic) and FeOx(soft-ferrimagnetic)/MnOx(hard-ferrimagnetic) core/shell nanoparticles has been carried out by means of scanning transmission electron microscopy with electron energy loss spectroscopy analysis, (S)TEM-EELS. Quantitative EELS was applied to assess the local composition of the nanoparticles by evaluating the local Mn oxidation state based on the Mn L-3/L-2 peak intensity ratio and the Mn L-3 peak onset. The analysis allows to unambiguously distinguish the core from the shell and to determine the nature of the involved manganese oxides in both cases. The results evidence that the structure of the nanoparticles is, in fact, more complex than the one designed by the synthesis parameters. 
  •  
26.
  • Estrader, Marta, et al. (författare)
  • Origin of the large dispersion of magnetic properties in nanostructured oxides : FexO/Fe3O4 nanoparticles as a case study
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 7:7, s. 3002-3015
  • Tidskriftsartikel (refereegranskat)abstract
    • The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides.
  •  
27.
  • Estrader, M., et al. (författare)
  • Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.
  •  
28.
  • Farhadi-Khouzani, Masoud, et al. (författare)
  • A CaCO3/nanocellulose-based bioinspired nacre-like material
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 5:31, s. 16128-16133
  • Tidskriftsartikel (refereegranskat)abstract
    • Nacre continues to be an inspiration for the fabrication of strong and tough materials from renewable and earth-abundant raw materials. Herein, we showed how a nacre-like hybrid material based on nanocellulose (NC) and CaCO3 can be prepared via the sequential infiltration of polymer-stabilised CaCO3 liquid precursors into layers of predeposited NC films. Layer-by-layer assembly of the NC films followed by controlled spreading and infiltration with liquid CaCO3 precursors generated a lamellar material with an architecture and iridescent appearance similar to those of nacre. The wettability of the NC films towards the liquid CaCO3 precursors was controlled by hydroxyl and carboxyl functionalization of the NC fibrils and the addition of magnesium ions. The combination of a high stiffness and plasticity of the nacre-like NC/CaCO3 hybrid materials show that excellent mechanical properties can be obtained employing a fibrillar organic constituent that is relatively hard. The fabrication of a nacrelike hybrid material via an aqueous route of assembly and infiltration processing demonstrates how a sustainable composite material with outstanding properties can be produced using the most abundant biopolymer and biomineral on earth.
  •  
29.
  • Faure, B., et al. (författare)
  • 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals
  • 2013
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 5:3, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.
  •  
30.
  • Faure, Bertrand, et al. (författare)
  • Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens
  • 2013
  • Ingår i: Science and Technology of Advanced Materials. - : Informa UK Limited. - 1468-6996 .- 1878-5514. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.
  •  
31.
  • Faure, Bertrand, et al. (författare)
  • Hamaker Constants of Iron Oxide Nanoparticles
  • 2011
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 27:14, s. 8659-8664
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanopartides interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.
  •  
32.
  • Feygenson, Mikhail, et al. (författare)
  • Probing spin waves in Co3O4 nanoparticles for magnonics applications
  • 2024
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 16:3, s. 1291-1303
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic properties of spinel nanoparticles can be controlled by synthesizing particles of a specific shape and size. The synthesized nanorods, nanodots and cubic nanoparticles have different crystal planes selectively exposed on the surface. The surface effects on the static magnetic properties are well documented, while their influence on spin waves dispersion is still being debated. Our ability to manipulate spin waves using surface and defect engineering in magnetic nanoparticles is the key to designing magnonic devices. We synthesized cubic and spherical nanoparticles of a classical antiferromagnetic material Co3O4 to study the shape and size effects on their static and dynamic magnetic proprieties. Using a combination of experimental methods, we probed the magnetic and crystal structures of our samples and directly measured spin wave dispersions using inelastic neutron scattering. We found a weak, but unquestionable, increase in exchange interactions for the cubic nanoparticles as compared to spherical nanoparticle and bulk powder reference samples. Interestingly, the exchange interactions in spherical nanoparticles have bulk-like properties, despite a ferromagnetic contribution from canted surface spins.
  •  
33.
  • Gebauer, Denis, et al. (författare)
  • A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles
  • 2011
  • Ingår i: NANOSCALE. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 3:9, s. 3563-3566
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.
  •  
34.
  • Guccini, Valentina, et al. (författare)
  • Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:43, s. 25032-25039
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in situ as a function of CNF surface charge density (600 and 1550 μmol g−1), counterion (H+ or Na+), membrane thickness and fuel cell relative humidity (RH 55 to 95%). The structural evolution of the membranes as a function of RH, as measured by Small Angle X-ray Scattering, shows that water channels are formed only above 75% RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (H+ or Na+). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm−1 at 30 °C between 65 and 95% RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈30% thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.
  •  
35.
  •  
36.
  • Guccini, Valentina, et al. (författare)
  • Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:43, s. 25032-25039
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in situ as a function of CNF surface charge density (600 and 1550 mu mol g(-1)), counterion (H+ or Na+), membrane thickness and fuel cell relative humidity (RH 55 to 95%). The structural evolution of the membranes as a function of RH, as measured by Small Angle X-ray Scattering, shows that water channels are formed only above 75% RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (H+ or Na+). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm(-1) at 30 degrees C between 65 and 95% RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being approximate to 30% thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.
  •  
37.
  • Guccini, Valentina, et al. (författare)
  • Inducing nematic ordering of cellulose nanofibers using osmotic dehydration
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 10:48, s. 23157-23163
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of nematically-ordered cellulose nanofiber (CNF) suspensions with an order parameter fmax ≈ 0.8 is studied by polarized optical microscopy, small-angle X-ray scattering (SAXS), and rheological measurements as a function of CNF concentration. The wide range of CNF concentrations, from 0.5 wt% to 4.9 wt%, is obtained using osmotic dehydration. The rheological measurements show a strong entangled network over all the concentration range whereas SAXS measurements indicate that at concentrations >1.05 wt% the CNF suspension crosses an isotropic-anisotropic transition that is accompanied by a dramatic increase of the optical birefringence. The resulting nanostructures are modelled as mass fractal structures that converge into co-existing nematically-ordered regions and network-like regions where the correlation distances decrease with concentration. The use of rapid, upscalable osmotic dehydration is an effective method to increase the concentration of CNF suspensions while partly circumventing the gel/glass formation. The facile formation of highly ordered fibers can result in materials with interesting macroscopic properties.
  •  
38.
  • Guccini, Valentina, 1988- (författare)
  • Nanocellulose: Energy Applications and Self-Assembly
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Technologies based on renewable materials are required to decrease the environmental cost and promote the development of a sustainable society. In this regard, nanocellulose extracted from wood finds many applications thanks to its intrinsic mechanical and chemical properties as well as the versatility in its manufacturing processes. In this thesis, I present the results of the investigations on carboxylated cellulose nanofibres (CNF) as ionic conductive membranes and electrode component in fuel cells and lithium ion batteries. Moreover, I also show the results of the assembly of CNF suspension and cellulose nanocrystals (CNC) - lepidocrocite nanorods (LpN) hybrids.The fuel cell performance of CNF-based proton conductive membranes was evaluated as a function of intrinsic material parameters such as membrane thickness and surface charge density as well as extrinsic parameters such as the relative humidity (RH). It was found that the proton conductivity is about 2 mS cm-1 at 30 °C between 65 and 95 % RH. At the same time, the water uptake of the membrane was measured and correlated with the structural evolution of the membrane using small angle X-ray scattering.The performance of the CNF-based separator in lithium ion batteries was investigated as a function of membrane porosity and protonation of the functional groups. The Li-ion battery assembled with the protonated separators showed stable and good rate performance.The CNF was also tested as binder in lithium ion battery, showing that the morphology and mechanical properties of the cathode depend on the nanofibre surface charge and degree of defibrillation. In particular, high surface charge and medium degree of defibrillation give the best electrochemical performance.Pyrolysed CNF (cCNF) improved the electrochemical performance of silicon nanoparticles-based anode thanks to the carbon network derived from the nanofibres. Si-cCNF has a capacity retention of 72.2 % after 500 cycles at 1 C and better performance rate than the pristine silicon nanoparticles.Regarding the assembly of nanocellulose, the nematic order of CNF suspension at different nanofibre concentrations (0.5 – 4.9 wt%) was studied by small angle X-ray scattering, polarized optical microscopy and rheological measurements. The order parameter reaches a maximum value of 0.8 depending on the CNF concentration. Small angle neutron scattering with contrast matching experiments reveals that the natural alignment of CNC and LpN can be switched using a combination of magnetic fields of up to 6.8 T and varying the amount of LpN incorporated in the CNC.
  •  
39.
  • Guccini, Valentina, 1988-, et al. (författare)
  • The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films
  • 2022
  • Ingår i: Biomacromolecules. - : NLM (Medline). - 1525-7797 .- 1526-4602. ; 23:8, s. 3104-3115
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibrils (CNFs) with carboxylated surface ligands are a class of materials with tunable surface functionality, good mechanical properties, and bio-/environmental friendliness. They have been used in many applications as scaffold, reinforcing, or functional materials, where the interaction between adsorbed moisture and the CNF could lead to different properties and structures and become critical to the performance of the materials. In this work, we exploited multiple experimental methods to study the water movement in hydrated films made of carboxylated CNFs prepared by TEMPO oxidation with two different surface charges of 600 and 1550 μmol·g-1. A combination of quartz crystal microbalance with dissipation (QCM-D) and small-angle X-ray scattering (SAXS) shows that both the surface charge of a single fibril and the films' network structure contribute to the moisture uptake. The films with 1550 μmol·g-1 surface charges take up twice the amount of moisture per unit mass, leading to the formation of nanostructures with an average radius of gyration of 2.1 nm. Via the nondestructive quasi-elastic neutron scattering (QENS), a faster motion is explained as a localized movement of water molecules inside confined spheres, and a slow diffusive motion is found with the diffusion coefficient close to bulk water at room temperature via a random jump diffusion model and regardless of the surface charge in films made from CNFs.
  •  
40.
  •  
41.
  • Hao, Wenming, et al. (författare)
  • High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 1. Their Use As Adsorbents for CO2
  • 2017
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 5:4, s. 3087-3095
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is naturally abundant and a renewable [GRAPHICS] precursor with the potential to be used in the production of both chemicals and materials. As many lignin conversion processes suffer from a significant production of solid wastes in the form of hydrochars, this study focused on transforming hydrochars into magnetic activated carbons (MAC). The hydrochars were produced via hydrothermal treatment of lignins together with formic acid. The activation of the hydrochars was performed chemically with KOH with a focus on the optimization of the MACs as adsorbents for CO2. MACs are potentially relevant to carbon capture and storage (CCS) and gas purification processes. In general, the MACs had high specific surface areas (up to 2875 m(2)/g), high specific pore volumes, and CO2 adsorption capacities of up to 6.0 mmol/g (I atm, 0 degrees C). The textual properties of the MACs depended on the temperature of the activation. MACs activated at a temperature of 700 degrees C had very high ultramicropore volumes, which are relevant for potential adsorption-driven separation of CO2 from N-2. Activation at 800 degrees C led to MACs with larger pores and very high specific surface areas. This temperature-dependent optimization option, combined with the magnetic properties, provided numerous potential applications of the MACs besides those of CCS. The hydrochar was derived from eucalyptus lignin, and the corresponding MACs displayed soft magnetic behavior with coercivities of <100 Oe and saturation magnetization values of 1-10 emu/g.
  •  
42.
  • Ishikawa, Mai, et al. (författare)
  • Fabrication of nanocellulose-hydroxyapatite composites and their application as water-resistant transparent coatings
  • 2015
  • Ingår i: Journal of materials chemistry. B. - : Royal Society of Chemistry (RSC). - 2050-750X .- 2050-7518. ; 3:28, s. 5858-5863
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosized composite rods similar to 300 nm in length and similar to 20 nm in width were produced by deposition of 22-77 wt% of a c-axis-oriented hydroxyapatite (HA) on cellulose nanocrystals (CNCs). The CNCs functionalized with sulphonic groups were covered with the HA nanocrystals through controlled nucleation and growth under a moderately supersaturated condition in a solution system based on a simulated body fluid. Water-resistant transparent coatings 2-4 mm thick were obtained via evaporation-induced assembly of CNC-HA nanocomposites by casting their suspension on a glass substrate and the subsequent growth of HA nanocrystals by vapour hydrothermal treatment. The composite coatings exhibited improved mechanical strength compared to that of crustacean exoskeletons, and potential for bone regeneration.
  •  
43.
  • Josten, Elisabeth, et al. (författare)
  • Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped gamma-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.
  •  
44.
  • Kim, Hyeyun, 1986-, et al. (författare)
  • Feasibility of chemically modified cellulose nanofiber membrane as lithium ion battery separator
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Chemical modification of cellulose contributes to its fibrillation to nanofibers and consequently production of a mesoporous membrane, desirable for lithium ion battery separator. Nevertheless, the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibers (TOCN) based separator with high charge density (650 μmol COO-/gCNF) has high risk of cell failure in lithium ion battery (LIB), compared to the counterpart with lower charge density (350 μmol/g). In this study, the influence of sodium carboxylate or carboxylic acid functional groups in TOCN as lithium ion battery separator was investigated. In-operando mass spectrometry measurements were used to elucidate the cause of cell failure by analyzing the gas evolved, from batteries containing different types of separators. For the TOCN separator with sodium carboxylate functional groups, it seems that Na deposition is the dominant reason for poor electrochemical stability of the cell thereof. The poor performance of the protonated TOCN separator is attributed to a high amount of gas evolution, mostly H2, originating from the reduction of trace water and H+ released from COOH and OH surface groups. Nonetheless, the electrochemical performance of the separator could be dramatically improved by adding 2 wt% of vinylene carbonate (VC) to the electrolyte, which effectively suppressed the generation of gas. Furthermore, the separator demonstrated excellent cycling stability in the pouch cell and sufficiently high specific capacity at ≈ 2C of discharging rate.
  •  
45.
  • Kim, Hyeyun, 1986-, et al. (författare)
  • Feasibility of Chemically Modified Cellulose Nanofiber Membranes as Lithium-Ion Battery Separators
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:37, s. 41211-41222
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical modification of cellulose is beneficial to produce highly porous lithium-ion battery (LIB) separators, but introduction of high charge density adversely affects its electrochemical stability in a LiNi1/3Mn1/3Co1/3O2 (NMC)/graphite full cell. In this study, the influence of carboxylate functional groups in 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidized cellulose nanofibers (TOCNs) on the electrochemical performances of the LIB separator was investigated. X-ray photoelectron spectroscopy and in operando mass spectrometry measurements were used to elucidate the cause of failure of the batteries containing TOCN separators in the presence and absence of sodium counterions in the carboxylate groups and additives. For the TOCN separator with sodium carboxylate functional groups, it seems that Na deposition is the dominant reason for poor electrochemical stability of the cell thereof. The poor performance of the protonated TOCN separator, attributed to a high amount of gas evolution, is dramatically improved by adding 2 wt % of vinylene carbonate (VC) because of suppressed gas evolution. Unveiling the failure mechanism of the TOCN separators and successively implementing the strategies to improve performance, for example, removing Na, adding VC, and adjusting cycling rates, enable a remarkable cycling performance in the NMC/graphite full cell at approximate to 2 C (3 mA/cm(2)) of a fast discharging rate. Despite the aforementioned efforts and compromises required, an increased charge density of the TOCN is beneficial to acquire a mechanically stronger separator. In conclusion, the manufacturing process of cellulose nanofibers needs to be carefully adjusted to acquire a desired separator property. To the best of our knowledge, it is first reported to perform operando gas evolution measurements to systematically investigate the electrochemical stability of nanocellulose as an LIB separator material. The results elucidate not only the challenges for extensive applications of hygroscopic biomaterials for commercial LIBs but also the practical solutions to achieve high electrochemical stability of the materials.
  •  
46.
  • Kim, Hyeyun, et al. (författare)
  • Lithium Ion Battery Separators Based On Carboxylated Cellulose Nanofibers From Wood
  • 2019
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 2:2, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • Carboxylated cellulose nanofibers, prepared by TEMPO-mediated oxidation (TOCN), were processed into asymmetric mesoporous membranes using a facile paper-making approach and investigated as lithium ion battery separators. Membranes made of TOCN with sodium carboxylate groups (TOCN-COO-Na+) showed capacity fading after a few cycles of charging and discharging. On the other hand, its protonated counterpart (TOCN-COOH) showed highly improved electrochemical and cycling stability, displaying 94.5% of discharge capacity maintained after 100 cycles at 1 C rate of charging and discharging. The asymmetric surface porosity of the membranes must be considered when assembling a battery cell as it influences the rate capabilities of the battery. The wood-based TOCN-membranes have a good potential as an ecofriendly alternative to conventional fossil fuel-derived separators without adverse side effects.
  •  
47.
  • Kim, Hyeyun, 1986-, et al. (författare)
  • One-step electro-precipitation of nanocellulose hydrogels on conducting substrates and its possible applications : coatings, composites, and energy devices
  • 2019
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 7:24, s. 19415-19425
  • Tidskriftsartikel (refereegranskat)abstract
    • TEMPO-oxidized cellulose nanofibrils (TOCN) are pH-responsive biopolymers which undergo sol–gel transition at acidic conditions (pH < 4) due to charge neutralization. Electronically conducting materials can be coated by such gels during aqueous electrolysis, when an electrochemical reaction generates a local pH decrease at the electrode surface. In this work, electro-precipitation of different TOCN gels has been performed on oxygen evolving anodes. We demonstrate that TOCN hydrogels can be electrochemically coated on the surface of any conductive material with even complex 3D shape. Further, not only TOCN but also micro- or nanosized particles containing TOCN composites can be coated on the electrode surface, and coatings containing multiple layers of different composites can be also produced. We demonstrate that this simple and facile electrocoating technique can be subject to various applications, such as coatings making electrodes selective for the hydrogen evolution reaction, as well as a new eco-friendly aqueous-based synthesis of Li-ion battery electrodes.
  •  
48.
  • Kim, Jong Min, et al. (författare)
  • A novel textile-like carbon wrapping for highperformance silicon anodes in lithium-ion batteries
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:26, s. 12475-12483
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon coating is essential for active materials in electrochemical applications that are often insulators or poor conductors. A conventional conformal carbon coating can hinder the ion diffusion to and from the active material and form an isolated conducting network. Especially, active materials with very large volume expansion, e.g., silicon, can destroy the carbon coating during lithiation, which makes conformal carbon coating inappropriate. This paper presents a novel textile-like carbon wrapping that provides efficient electron and ion diffusion paths via a wide-range carbon network and pores. The textile-like carbon wrapping can reduce the electrical contact loss during cycling through the wide-range carbon network, which makes it a suitable carbon coating for materials that undergo volume expansion. A textile-like carbon-wrapped silicon is formed by pyrolysis of a dried suspension of silicon nanoparticles mixed with enzymatically hydrolyzed cellulose nanofibers. It shows excellent electrochemical performance compared to a conformal carbon-coated silicon. It exhibits a reversible specific capacity of 680mA h g(-1) at 8.0 A g(-1) and shows excellent cycling stability (capacity retention of 94.5% after 500 cycles at 2.0 A g(-1)) with high Si content (95.71 wt%). Therefore, this novel textile-like carbon wrapping can be utilized in many electrochemical applications instead of the conventional carbon coating, especially for active materials that undergo large volume expansion.
  •  
49.
  • Kim, Jong Min, et al. (författare)
  • Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes
  • 2017
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 118, s. 8-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon is a good alternative to conventional graphite anode but it has bad cycling and rate performance. To overcome these severe problems, extensively interconnected silicon nanoparticles using carbon network derived from ultrathin cellulose nanofibers were synthesized. Ultrathin cellulose nanofibers, an abundant and sustainable material, entangle each silicon nanoparticle and become extensively interconnected carbon network after pyrolysis. This wide range interconnection provides an efficient electron path by decreasing the likelihood that electrons experience contact resistivity and also suppresses the volume expansion of silicon during lithiation. In addition, Ultrathin cellulose nanofibers are carboxylated and therefore adhesive to silicon nanoparticles through hydrogen bonding. This property makes ultrathin cellulose the perfect carbon source when making silicon composites. As a consequence, it exhibits 808 mAh g(-1) of the reversible capacity after 500 cycles at high current density of 2 A g(-1) with a coulombic efficiency of 99.8%. Even at high current density of 8 A g(-1), it shows a high reversible discharge capacity of 464 mAh g(-1). Moreover, extensively interconnected carbon network prevents the formation of a brittle electrode with a water-based binder. Therefore, this remarkable material has a huge potential for LIBs applications.
  •  
50.
  • Kim, Jong Min, et al. (författare)
  • TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 369
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon (Si) has been considered the most promising anode material for next-generation lithium-ion batteries due to its high theoretical capacity and natural abundance. However, the Si anode suffers from massive volume change, which results in challenging cycling performance. Many researches demonstrated that polymeric binder plays an important role to sustain the structural integrity of Si anodes. While most studies about the binder material have been focused on enhancing distinctive properties such as adhesive strength and mechanical property, it has been recently shown that binder distribution can help to improve electrochemical performance. Herein, we introduce TEMPO-oxidized cellulose nanofiber (TOCNF) as a versatile additive for the binder of silicon anode. The one-dimensional morphology of TOCNF efficiently reinforces the mechanical properties of the electrode. The TOCNF additive also contains carboxylic groups with sufficient flexibility to induce intimate interaction with Si via hydrogen bonding. Based on all of these beneficial features of TOCNF, the addition of similar to 1 wt% of TOCNF of the whole weight of silicon anode slurry significantly improved cycling stability. With pre-mixing, the resulting Si-TOCNF allows efficient water-based binder solution penetration, thus improving uniform binder distribution of electrode. Furthermore, the well-distributed binder protects silicon surface and forms a stable SEI layer. The current study suggests that the TOCNF additive facilitates uniform binder distribution in the electrode with enhanced mechanical properties, leading to improved cycling performance. (C) 2021 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 120
Typ av publikation
tidskriftsartikel (91)
annan publikation (13)
doktorsavhandling (9)
forskningsöversikt (3)
konferensbidrag (2)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (94)
övrigt vetenskapligt/konstnärligt (24)
populärvet., debatt m.m. (1)
Författare/redaktör
Salazar-Alvarez, Ger ... (107)
Bergström, Lennart (30)
Guccini, Valentina (16)
Nogués, Josep (12)
Cornell, Ann M., 196 ... (10)
Wetterskog, Erik (9)
visa fler...
Sort, Jordi (9)
Svedlindh, Peter (8)
Ulusoy, Seda (8)
Nogués, J. (8)
Kumar, Sugam (7)
Estrader, Marta (7)
Lopez-Ortega, Albert ... (7)
Agthe, Michael (6)
Anil, Athira (6)
Disch, Sabrina (6)
Lindbergh, Göran, 19 ... (5)
Yu, Shun (5)
Olsson, Richard T. (5)
Wetterskog, Erik, 19 ... (5)
Trushkina, Yulia (5)
Johnsson, Mats (4)
Muhammed, Mamoun (4)
Bacsik, Zoltan (4)
Fall, Andreas (4)
Mayence, Arnaud (4)
Gedde, Ulf W. (4)
Valvo, Mario (4)
White, Jai (4)
Estrade, Sonia (4)
Peiro, Francesca (4)
Baro, M. D. (4)
López-Ortega, A. (4)
Estrader, M. (4)
Berglund, Lars (3)
Mathew, Aji P. (3)
Wang, Dong (3)
Wågberg, Lars (3)
Boily, Jean-Francois (3)
Tai, Cheuk-Wai (3)
Wang, Yu (3)
Salajkova, Michaela (3)
Hermann, Raphael P. (3)
Brueckel, Thomas (3)
Grins, Jekabs (3)
Carlson, Annika (3)
Brückel, Thomas (3)
Sort, J. (3)
Lindström, Rakel, 19 ... (3)
Winkler, Elin (3)
visa färre...
Lärosäte
Stockholms universitet (80)
Kungliga Tekniska Högskolan (44)
Uppsala universitet (30)
RISE (9)
Umeå universitet (4)
Lunds universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Karolinska Institutet (3)
Linköpings universitet (2)
Göteborgs universitet (1)
Luleå tekniska universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (120)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (99)
Teknik (38)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy