SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salehzadeh F) "

Sökning: WFRF:(Salehzadeh F)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rune, A., et al. (författare)
  • Evidence against a sexual dimorphism in glucose and fatty acid metabolism in skeletal muscle cultures from age-matched men and post-menopausal women
  • 2009
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 197:3, s. 207-215
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: In vivo whole body differences in glucose/lipid metabolism exist between men and women. Thus, we tested the hypothesis that intrinsic sex differences exist in skeletal muscle gene expression and glucose/lipid metabolism using cultured myotubes. Methods: Myotube cultures were prepared for gene expression and metabolic studies from vastus lateralis skeletal muscle biopsies obtained from age-matched men (n = 11; 59 +/- 2 years) and post-menopausal women (n = 10; 60 +/- 1 years). Results: mRNA expression of several genes involved in glucose and lipid metabolism was higher in skeletal muscle biopsies from female vs. male donors, but unaltered between the sexes in cultured myotubes. Basal and insulin-stimulated glucose uptake, as well as glucose incorporation into glycogen, was similar in myotube cultures derived from male vs. female donors. In males vs. females, insulin increased glucose uptake (1.3 +/- 0.1 vs. 1.5 +/- 0.1-fold respectively) and incorporation into glycogen (2.3 +/- 0.3 vs. 2.0 +/- 0.3-fold respectively) to the same extent. Basal fatty acid oxidation and rate of uptake/accumulation was similar between sexes. In response to the 5'AMP-activated protein kinase activator AICAR, lipid oxidation was increased to the same extent in myotubes established from male vs. female donors (1.6 +/- 0.6 vs. 2.0 +/- 0.3-fold respectively). Moreover, the AICAR-induced rate of uptake/accumulation was similar between sexes. Conclusion: Differences in metabolic parameters and gene expression profiles between age-matched men and post-menopausal women noted in vivo are not observed in cultured human skeletal muscle cells. Thus, the sexual dimorphism in glucose and lipid metabolism is likely a consequence of systemic whole body factors, rather than intrinsic differences in the skeletal muscle proper.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Li, Q., et al. (författare)
  • Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27, s. 1941-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation. Studies in mature human adipocytes demonstrate that obesity and hyperinsulinemia can induce reentry into the cell cycle and induce senescence.
  •  
12.
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy