SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandström Anja Associate professor) "

Sökning: WFRF:(Sandström Anja Associate professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skogh, Anna, 1986- (författare)
  • Development of Substance P 1–7 Related Peptides and Peptidomimetics : Targeting Neuropathic Pain
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The neuropeptide substance P 1–7 (SP1–7, H-Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-OH) and its amidated analogue SP1–7 amide, have displayed intriguing effects in experimental models for neuropathic pain acting on a specific, yet unknown SP1–7 target. The aim of this thesis was to design and synthesise SP1–7 related peptides and peptidomimetics, to be used as research tools to study the SP1–7 system, and to serve as drug leads in the neuropathic pain area.The in vivo structure activity relationship (SAR) of the SP1–7 amide was elucidated using Ala-substituted, N-terminally truncated and N-methylated variants. By evaluation of the anti-allodynic effect in spared nerve injury (SNI) mice and the pharmacokinetic properties it is suggested that Phe7 acts as a message residue and Arg1 as an address residue, both important for the overall anti-allodynic activity. In contrast, Lys3 could be substituted by alanine, and the Pro2-Lys3 and Pro4-Gln5 bond could be N-methylated with retained anti-allodynic effect. The Pro2-Lys3 bond was found most sensitive towards proteolysis and indeed, N-methylation of this bond delivered peptides completely inert in plasma. Conversely, prolonged plasma stability did not improve the overall in vivo activity for these peptides. Instead, the SP1–7 amide remained the most potent peptide in vivo, despite fast degradation in plasma.    Besides peptide synthesis, the synthetic work included development of a Pd-catalysed aminocarbonylation protocol using an amino acid nucleophile, which was used for the synthesis of an imidazole-based peptidomimetic. This peptidomimetic was equipotent to the SP1–7 amide, and more potent than the drug gabapentin, in regard to its anti-allodynic effect in SNI mice, and it is a promising drug lead for further development. The Pd-catalysed aminocarbonylation protocol was refined further, in regards to reaction scope and requirements for solid-phase peptide synthesis and has proven useful for N-capping, isotopic labelling, and intramolecular cyclisation of peptides.In summary, the work presented herein resulted in an in vivo SAR for SP1–7 related peptides, a novel small molecule SP1–7 peptidomimetic, and methods expanding the toolbox for synthesising modified peptides and peptidomimetics – a field in drug discovery that presently gaining increasing attention.
  •  
2.
  • Alogheli, Hiba (författare)
  • Computational Studies of Macrocycles and Molecular Modeling of Hepatitis C Virus NS3 Protease Inhibitors
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Computational tools are utilized in the drug discovery process to discover, design, and optimize new therapeutics. One important approach is structure-based drug design which relies on knowledge about the 3D structure of the biological target. The first part of this work focuses on applying structure-based drug design for binding mode prediction of HCV NS3 protease inhibitors. The NS3 protease is a challenging target from a computational perspective as it contains an extended binding site. Binding mode predictions were performed for various classes of new acyclic and macrocyclic HCV NS3 protease inhibitors and was used in the design of new inhibitors. None of the synthetized inhibitors have been co-crystallized yet, which has made the evaluation of the suggested binding mode predictions challenging.Macrocycles are an interesting compound class in drug discovery due to their unique structural architecture, which can enable access to new chemical space. Macrocycles can successfully modulate difficult therapeutic targets, as exemplified in the development of protease inhibitors. Furthermore they can improve drug-like properties, such as cell permeability and bioavailability. The second part of this thesis focuses on macrocycles from a computational point of view. A data set of 47 clinically relevant macrocycles was compiled and used in these studies. First, two different docking protocols rigid docking of pre-generated conformers and flexible docking in Glide were evaluated and compared. The results showed that flexible docking in Glide was sufficient for docking of macrocycles with respect to accuracy and speed.The aim of the second study was to evaluate and compare the performance of the more general conformational analysis tools, MCMM and MTLMOD, with the recently developed macrocycle-specialized conformational sampling tools, Prime-MCS and MMBS. In most cases, the general conformational analysis tools (with enhanced parameter settings) performed equally well as compared to the macrocycle-specialized conformational sampling techniques. However, MMBS was superior at locating the global energy minimum conformation.Finally, calculation of the conformational energy penalty of protein-bound macrocycles was performed. The macrocycle data set was complemented with linear analogues that are similar either with respect to physicochemical properties or 2D fingerprints. The conformational energy penalties of these linear analogues were calculated and compared to the conformational energy penalties of the macrocycles. The complete data set of macrocycles and non-macrocycles in this study differ from previously published work addressing conformational energy penalties, since it covers a more extended area of chemical space. Furthermore, there was a weak correlation between the calculated conformational energy penalties and the flexibility of the structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy