SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Santagata Rosa) "

Sökning: WFRF:(Santagata Rosa)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hamperl, Jonas, et al. (författare)
  • High Energy Parametric Laser Source and Frequency-Comb-Based Wavelength Reference for CO2 and Water Vapor DIAL in the 2 mu m Region : Design and Pre-Development Experimentations
  • 2021
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a differential absorption lidar (DIAL) laser transmitter concept designed around a Nested Cavity Optical Parametric Oscillator (NesCOPO) based Master Oscillator Power Amplifier (MOPA). The spectral bands are located around 2051 nm for CO2 probing and 1982 nm for (H2O)-O-16 and (HDO)-O-16 water vapor isotopes. This laser is aimed at being integrated into an airborne lidar, intended to demonstrate future spaceborne instrument characteristics: high-energy (several tens of mJ nanosecond pulses) and high optical frequency stability (less than a few hundreds of kHz long term drift). For integration and efficiency purposes, the proposed design is oriented toward the use of state-of-the-art high aperture periodically poled nonlinear materials. This approach is supported by numerical calculations and preliminary experimental validations, showing that it is possible to achieve energies in the 40-50 mJ range, reaching the requirement levels for spaceborne Integrated Path Differential Absorption (IPDA) measurements. We also propose a frequency referencing technique based on beat note measurement of the laser signal with a self-stabilized optical frequency comb, which is expected to enable frequency measurement precisions better than a few 100 kHz over tens of seconds integration time, and will then be used to feed the cavity locking of the NesCOPO.
  •  
2.
  •  
3.
  • Hamperl, Jonas, et al. (författare)
  • Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 mu m differential absorption LIDAR
  • 2022
  • Ingår i: Optics Express. - : Optica Publishing Group. - 1094-4087. ; 30:26, s. 47199-47215
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a first demonstration of range-resolved differential absorption LIDAR (DIAL) measurements of the water vapor main isotopologue H216O and the less abundant semi-heavy water isotopologue HD16O with the aim of determining the isotopic ratio. The presented Water Vapor and Isotope Lidar (WaVIL) instrument is based on a parametric laser source emitting nanosecond pulses at 1.98 mu m and a direct-detection receiver utilizing a commercial InGaAs PIN photodiode. Vertical profiles of H216O and HD16O were acquired in the planetary boundary layer in the suburban Paris region up to a range of 1.5 km. For time averaging over 25 min, the achieved precision in the retrieved water vapor mixing ratio is 0.1 g kg-1 (2.5% relative error) at 0.4 km above ground level (a.g.l.) and 0.6 g kg-1 (20%) at 1 km a.g.l. for 150 m range bins along the LIDAR line of sight. For HD16O, weaker absorption has to be balanced with coarser vertical resolution (600 m range bins) in order to achieve similar relative precision. From the DIAL measurements of H216O and HD16O, the isotopic abundance delta D was estimated as -51%0 at 0.4 km above the ground and -119%0 in the upper part of the boundary layer at 1.3 km a.g.l. Random and systematic errors are discussed in the form of an error budget, which shows that further instrumental improvements are required on the challenging path towards DIAL-profiling of the isotopic abundance with range resolution and precision suitable for water cycle studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy