SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanyal Suparna) "

Sökning: WFRF:(Sanyal Suparna)

  • Resultat 1-50 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Debapriya, et al. (författare)
  • Spectroscopic and DFT studies on 6-Aminophenanthridine and its derivatives provide insights in their activity towards ribosomal RNA
  • 2014
  • Ingår i: Biochimie. - : Elsevier BV. - 0300-9084 .- 1638-6183. ; 97, s. 194-199
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Aminophenanthridine (6AP), a plant alkaloid possessing antiprion activity, inhibits ribosomal RNA dependent protein folding activity of the ribosome (referred as PFAR). We have compared 6AP and its three derivatives 6AP8Cl, 6AP8CF3 and 6APi for their activity in inhibition of PFAR. Since PFAR inhibition requires 6AP and its derivatives to bind to the ribosomal RNA (rRNA), we have measured the binding affinity of these molecules to domain V of 23S rRNA using fluorescence spectroscopy. Our results show that similar to the antiprion activity, both the inhibition of PFAR and the affinity towards rRNA follow the order 6AP8CF3 > 6AP8Cl > 6AP, while 6APi is totally inactive. To have a molecular insight for the difference in activity despite similarities in structure, we have calculated the nucleus independent chemical shift using first principles density functional theory. The result suggests that the deviation of planarity in 6APi and steric hindrance from its bulky side chain are the probable reasons which prevent it from interacting with rRNA. Finally, we suggest a probable mode of action of 6AP, 6AP8CF3 and 6AP8Cl towards rRNA.
  •  
2.
  • Vovusha, Hakkim, et al. (författare)
  • Binding Characteristics of Anticancer Drug Doxorubicin with Two-Dimensional Graphene and Graphene Oxide : Insights from Density Functional Theory Calculations and Fluorescence Spectroscopy
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 122:36, s. 21031-21038
  • Tidskriftsartikel (refereegranskat)abstract
    • There has been a perpetual interest in identifying suitable nano-carriers for drug delivery. In this regard, graphene-based two-dimensional materials have been proposed and demonstrated as drug carriers. In this paper, we have investigated the adsorption characteristics of a widely used anticancer drug, doxorubicin (DOX), on graphene (G) and graphene oxide (GO) by density functional theory calculations and fluorescence and X-ray photoelectron spectroscopies. From the calculated structural and electronic properties, we have concluded that G is a better binder of DOX compared to GO, which is also supported by our fluorescence measurements. The binding of DOX to G is mainly based on strong pi-pi stacking interactions. Consistent with this result, we also found that the sp(2) regions of GO interact with DOX stronger than the sp(3) regions attached with the functional groups; the binding is characterized by pi-pi and hydrogen-bonding interactions, respectively.
  •  
3.
  • Vovusha, Hakkim, et al. (författare)
  • Electronic structure and spectroscopic properties of 6-aminophenanthridine and its derivatives : Insights from density functional theory
  • 2015
  • Ingår i: International Journal of Quantum Chemistry. - : Wiley. - 0020-7608 .- 1097-461X. ; 115:13, s. 846-852
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Aminophenanthridine (6AP) and its derivatives show important biological activities as antiprion compounds and inhibitors of the protein folding activity of the ribosome. Both of these activities depend on the RNA binding property of these compounds, which has been recently characterized by fluorescence spectroscopy. Hence, fundamental insights into the photophysical properties of 6AP compounds are highly important to understand their biological activities. In this work, we have calculated electronic structures and optical properties of 6AP and its three derivatives 6AP8CF(3), 6AP8Cl, and 6APi by density functional theory (DFT) and time-dependent density functional theory (TDDFT). Our calculated spectra show a good agreement with the experimental absorption and fluorescence spectra, and thus, provide deep insights into the optical properties of the compounds. Furthermore, comparing the results obtained with four different hybrid functionals, we demonstrate that the accuracy of the functionals varies in the order B3LYP>PBE0>M062X>M06HF.
  •  
4.
  • Vovusha, Hakkim, et al. (författare)
  • Interaction of Nucleobases and Aromatic Amino Acids with Graphene Oxide and Graphene Flakes
  • 2013
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 4:21, s. 3710-3718
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we have studied interactions of nucleobases and aromatic amino acids with graphene (G) and graphene oxide (GO) flakes by ab initio density functional theory (DFT). It is evident from the results that GO complexes are stabilized by hydrogen bonding interactions whereas G complexes are stabilized by pi-pi interactions, leading to enhanced binding energies for GO complexes compared to G complexes. Moreover, time-dependent DFT (TD-DFT) calculations for the optical properties reveal that the GO nanoflakes and GO-nucleobase composite absorb visible light in the range of 400-700 nm, which may be useful for light-emitting devices. The insights obtained from our study will be useful to understand the role of GO flakes as carriers in targeted drug delivery and biosensors.
  •  
5.
  • Abdalaal, Hind, et al. (författare)
  • Collateral toxicity limits the evolution of bacterial Release Factor 2 towards total omnipotence
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:10, s. 2918-2930
  • Tidskriftsartikel (refereegranskat)abstract
    • When new genes evolve through modification of existing genes, there are often trade-offs between the new and original functions, making gene duplication and amplification necessary to buffer deleterious effects on the original function. We have used experimental evolution of a bacterial strain lacking peptide release factor 1 (RF1) in order to study how peptide release factor 2 (RF2) evolves to compensate the loss of RF1. As expected, amplification of the RF2-encoding gene prfB to high copy number was a rapid initial response, followed by the appearance of mutations in RF2 and other components of the translation machinery. Characterization of the evolved RF2 variants by their effects on bacterial growth rate, reporter gene expression, and in vitro translation termination reveals a complex picture of reduced discrimination between the cognate and near cognate stop codons and highlight a functional trade-off that we term “collateral toxicity”. We suggest that this type of trade-off may be a more serious obstacle in new gene evolution than the more commonly discussed evolutionary trade-offs between “old” and “new” functions of a gene, as it cannot be overcome by gene copy number changes. Further, we suggest a model for how RF2 autoregulation responds not only to alterations in the demand for RF2 activity, but also for RF1 activity.
  •  
6.
  •  
7.
  • Aguirre Rivera, Javier, 1989-, et al. (författare)
  • Real-time measurements of aminoglycoside effects on protein synthesis in live cells
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 118:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The spread of antibiotic resistance is turning many of the currently used antibiotics less effective against common infections. To address this public health challenge, it is critical to enhance our understanding of the mechanisms of action of these compounds. Aminoglycoside drugs bind the bacterial ribosome, and decades of results from in vitro biochemical and structural approaches suggest that these drugs disrupt protein synthesis by inhibiting the ribosome's translocation on the messenger RNA, as well as by inducing miscoding errors. So far, however, we have sparse information about the dynamic effects of these compounds on protein synthesis inside the cell. In the present study, we measured the effect of the aminoglycosides apramycin, gentamicin, and paromomycin on ongoing protein synthesis directly in live Escherichia coli cells by tracking the binding of dye-labeled transfer RNAs to ribosomes. Our results suggest that the drugs slow down translation elongation two- to fourfold in general, and the number of elongation cycles per initiation event seems to decrease to the same extent. Hence, our results imply that none of the drugs used in this study cause severe inhibition of translocation.
  •  
8.
  • Albers, Suki, et al. (författare)
  • Repurposing tRNAs for nonsense suppression
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the T Psi C-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 angstrom resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon. Here, the authors report de novo design, optimization and characterization of tRNAs that decode UGA stop codons in E. coli. The structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon suggests that distinct A-site ligands (tRNAs versus release factors) induce distinct conformation of the stop codon within the mRNA in the decoding center.
  •  
9.
  • Banerjee, Debapriya, et al. (författare)
  • Protein Folding Activity of the Ribosome (PFAR) : A Target for Antiprion Compounds
  • 2014
  • Ingår i: Viruses. - : MDPI AG. - 1999-4915. ; 6:10, s. 3907-3924
  • Forskningsöversikt (refereegranskat)abstract
    • Prion diseases are fatal neurodegenerative diseases affecting mammals. Prions are misfolded amyloid aggregates of the prion protein (PrP), which form when the alpha helical, soluble form of PrP converts to an aggregation-prone, beta sheet form. Thus, prions originate as protein folding problems. The discovery of yeast prion(s) and the development of a red-/white-colony based assay facilitated safe and high-throughput screening of antiprion compounds. With this assay three antiprion compounds; 6-aminophenanthridine (6AP), guanabenz acetate (GA), and imiquimod (IQ) have been identified. Biochemical and genetic studies reveal that these compounds target ribosomal RNA (rRNA) and inhibit specifically the protein folding activity of the ribosome (PFAR). The domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active site for PFAR. 6AP and GA inhibit PFAR by competition with the protein substrates for the common binding sites on the domain V rRNA. PFAR inhibition by these antiprion compounds opens up new possibilities for understanding prion formation, propagation and the role of the ribosome therein. In this review, we summarize and analyze the correlation between PFAR and prion processes using the antiprion compounds as tools.
  •  
10.
  • Bartish, Galyna, 1962- (författare)
  • Elongation factor 2: A key component of the translation machinery in eukaryotes : Properties of yeast elongation factor 2 studied in vivo
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Synthesis of proteins is performed by the ribosome, a large ribonucleoprotein complex. Apart from the ribosome, numerous protein factors participate in this process. Elongation factor 2 (eEF2) is one of these factors. eEF2 is an essential protein with a mol. mass of about 100 kDa. The amino acid sequence of eEF2 is highly conserved in different organisms. eEF2 from S. cerevisiae contains 842 amino acids. The role of eEF2 in protein synthesis is to participate in the translocation of tRNAs from the A- and P-sites on the ribosome to the P- and E-sites. This movement of tRNAs is accompanied by a simultaneous movement of mRNA by one codon. eEF2 consists of six domains referred to as domains G, G′ and II-V, belongs to the G-protein super-family and possesses all structural motifs characterizing proteins in this family. eEF2 binds to the ribosome in complex with GTP. After GTP hydrolysis and translocation, it leaves the ribosome bound to GDP. The rate of protein synthesis in the cell can be regulated by phosphorylation of eEF2. Phosphorylation occurs on two threonine residues, situated in the G domain of the factor. Phosphorylation of eEF2 is catalysed by Rck2-kinase in yeast which is activated in response to osmotic stress. Despite the high degree of conservation of the threonine residues, they are not essential for yeast cell under normal growth conditions. However, under mild osmotic stress the growth rate of the cells lacking threonine residues was decreased. Region where threonine residues are located, called Switch I. Cryo-EM reconstruction shows that this region adopts ordered conformation when the eEF2•GTP complex is bound to the ribosome but became structurally disordered upon GTP hydrolysis. Mutagenesis of individual amino acids in Switch I resulted in both functional and non-functional eEF2 depending on the site of mutation and the substituting amino acid. Both functional and non-functional Switch I mutants were able to bind to the ribosome, indicating that mutations did not abolish the capacity of the factor to bind GTP. Yeast eEF2 with Switch I region from E. coli was able to substitute the wild type protein in vivo, though the growth rate of these cells was severely impaired. The eEF2-dependent GTP hydrolysis can be activated by ribosome from heterologous sources as seen in vitro. However, eEF2 from A. thaliana, D. melanogaster and S. solfataricus could not substi-tute yeast eEF2 in vivo. This may indicate additional roles of eEF2 in the yeast cell, apart from translocation itself.
  •  
11.
  • Borg, Anneli, et al. (författare)
  • Fusidic Acid Targets Elongation Factor G in Several Stages of Translocation on the Bacterial Ribosome
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:6, s. 3440-3454
  • Tidskriftsartikel (refereegranskat)abstract
    • The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation(III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K-50% approximate to 1 mu M), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.
  •  
12.
  •  
13.
  • Bouakaz, Lamine, et al. (författare)
  • The Role of Ribosomal Protein L11 in Class I Release Factor-mediated Translation Termination and Translational Accuracy
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 281:7, s. 4548-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested from in vivo and cryoelectron micrographic studies that the large ribosomal subunit protein L11 and its N-terminal domain play an important role in peptide release by, in particular, the class I release factor RF1. In this work, we have studied in vitro the role of L11 in translation termination with ribosomes from a wild type strain (WT-L11), an L11 knocked-out strain (ΔL11), and an L11 N terminus truncated strain (Cter-L11). Our data show 4-6-fold reductions in termination efficiency (kcat/Km) of RF1, but not of RF2, on ΔL11 and Cter-L11 ribosomes compared with wild type. There is, at the same time, no effect of these L11 alterations on the maximal rate of ester bond cleavage by either RF1 or RF2. The rates of dissociation of RF2 but not of RF1 from the ribosome after peptide release are somewhat reduced by the L11 changes irrespective of the presence of RF3, and they cause a 2-fold decrease in the missense error. Our results suggest that the L11 modifications increase nonsense suppression at UAG codons because of the reduced termination efficiency of RF1 and that they decrease nonsense suppression at UGA codons because of a decreased missense error level.
  •  
14.
  •  
15.
  • Chai, Qian, et al. (författare)
  • Organization of Ribosomes and Nucleoids in Escherichia coli Cells during Growth and in Quiescence
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289:16, s. 11342-11352
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We studied ribosome and nucleoid distribution in Escherichia coli under growth and quiescence. Results: Spatially segregated ribosomes and nucleoids show drastically altered distribution in stationary phase or when treated with drugs affecting translation, transcription, nucleoid-topology, or cytoskeleton. Ribosome inheritance in daughter cells is frequently unequal. Conclusion: Cellular growth processes modulate ribosome and nucleoid distribution. Significance: This provides insight into subcellular organization of molecular machines. We have examined the distribution of ribosomes and nucleoids in live Escherichia coli cells under conditions of growth, division, and in quiescence. In exponentially growing cells translating ribosomes are interspersed among and around the nucleoid lobes, appearing as alternative bands under a fluorescence microscope. In contrast, inactive ribosomes either in stationary phase or after treatment with translation inhibitors such as chloramphenicol, tetracycline, and streptomycin gather predominantly at the cell poles and boundaries with concomitant compaction of the nucleoid. However, under all conditions, spatial segregation of the ribosomes and the nucleoids is well maintained. In dividing cells, ribosomes accumulate on both sides of the FtsZ ring at the mid cell. However, the distribution of the ribosomes among the new daughter cells is often unequal. Both the shape of the nucleoid and the pattern of ribosome distribution are also modified when the cells are exposed to rifampicin (transcription inhibitor), nalidixic acid (gyrase inhibitor), or A22 (MreB-cytoskeleton disruptor). Thus we conclude that the intracellular organization of the ribosomes and the nucleoids in bacteria are dynamic and critically dependent on cellular growth processes (replication, transcription, and translation) as well as on the integrity of the MreB cytoskeleton.
  •  
16.
  • Chan, Sherwin, et al. (författare)
  • Regulation of PfEMP1-VAR2CSA translation by a Plasmodium translation-enhancing factor
  • 2017
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 2:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Pregnancy-associated malaria commonly involves the binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate A (CSA) through the PfEMP1-VAR2CSA protein. VAR2CSA is translationally repressed by an upstream open reading frame. In this study, we report that the P. falciparum translation enhancing factor (PTEF) relieves upstream open reading frame repression and thereby facilitates VAR2CSA translation. VAR2CSA protein levels in var2csa-transcribing parasites are dependent on the expression level of PTEF, and the alleviation of upstream open reading frame repression requires the proteolytic processing of PTEF by PfCalpain. Cleavage generates a C-terminal domain that contains a sterile-alpha-motif-like domain. The C-terminal domain is permissive to cytoplasmic shuttling and interacts with ribosomes to facilitate translational derepression of the var2csa coding sequence. It also enhances translation in a heterologous translation system and thus represents the first non-canonical translation enhancing factor to be found in a protozoan. Our results implicate PTEF in regulating placental CSA binding of infected erythrocytes.
  •  
17.
  • Chen, Yang, et al. (författare)
  • Staphylococcus aureus elongation factor G - structure and analysis of a target for fusidic acid
  • 2010
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 277:18, s. 3789-3803
  • Tidskriftsartikel (refereegranskat)abstract
    • Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) on the ribosome in a post-translocational state. It is used clinically against Gram-positive bacteria such as pathogenic strains of Staphylococcus aureus, but no structural information has been available for EF-G from these species. We have solved the apo crystal structure of EF-G from S. aureus to 1.9 A resolution. This structure shows a dramatically different overall conformation from previous structures of EF-G, although the individual domains are highly similar. Between the different structures of free or ribosome-bound EF-G, domains III-V move relative to domains I-II, resulting in a displacement of the tip of domain IV relative to domain G. In S. aureus EF-G, this displacement is about 25 A relative to structures of Thermus thermophilus EF-G in a direction perpendicular to that in previous observations. Part of the switch I region (residues 46-56) is ordered in a helix, and has a distinct conformation as compared with structures of EF-Tu in the GDP and GTP states. Also, the switch II region shows a new conformation, which, as in other structures of free EF-G, is incompatible with FA binding. We have analysed and discussed all known fusA-based fusidic acid resistance mutations in the light of the new structure of EF-G from S. aureus, and a recent structure of T. thermophilus EF-G in complex with the 70S ribosome with fusidic acid [Gao YG et al. (2009) Science326, 694-699]. The mutations can be classified as affecting FA binding, EF-G-ribosome interactions, EF-G conformation, and EF-G stability.
  •  
18.
  •  
19.
  • Chen, Yu-Xiang, et al. (författare)
  • Selective translation by alternative bacterial ribosomes
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:32, s. 19487-19496
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.
  •  
20.
  • Cordeiro, Yraima, et al. (författare)
  • Modulation of p53 and prion protein aggregation by RNA
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - : Elsevier BV. - 1570-9639 .- 1878-1454. ; 1867:10, s. 933-940
  • Forskningsöversikt (refereegranskat)abstract
    • Several RNA-binding proteins undergo reversible liquid-liquid phase transitions, which, in pathological conditions, might evolve into transitions to solid-state phases, giving rise to amyloid structures. Amyloidogenic and prion-like proteins, such as the tumor suppressor protein p53 and the mammalian prion protein (PrP), bind RNAs specifically or nonspecifically, resulting in changes in their propensity to undergo aggregation. Mutant p53 aggregation seems to play a crucial role in cancer through loss of function, negative dominance and gain of function. PrP conversion modulated by RNA results in highly toxic aggregates. Here, we review data on the modulatory action of RNAs on the aggregation of both proteins.
  •  
21.
  • De Tarafder, Arindam (författare)
  • Adaptive Evolution of the Bacterial Translation Machinery
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The process of protein synthesis via translation is of paramount importance for the existence of life on Earth. The bacterial translation machinery has embraced more than 3.5 billion years of molecular evolution to adapt and function efficiently under the provided physiological conditions. This thesis dwells on the intricacies of the adaptive evolution, which the massively complex translation machinery has undergone to function optimally in diverse conditions and habitats. In Paper I, we used elongation factor Tu (EF-Tu) as a model system to follow the evolution of ribosome specificity in translation factors. For that, we have biochemically characterized two sequence-reconstructed ancestral EF-Tu variants for their specificities towards two unrelated extant bacterial ribosomes, mesophilic Escherichia coli and thermophilic Thermus thermophilus. Our fast kinetics-based biochemical analysis hints at the ‘generalist’ ancestry of modern EF-Tu proteins. In Paper II, we have reconstituted an in vitro translation system of the psychrotolerant bacteria Pseudoalteromonas haloplanktis to quantitatively characterize the steps of translation elongation. Our results demonstrate similar kinetics of peptide bond formation in psychrotolerant P. haloplanktis and mesophilic E. coli. In contrast, P. haloplanktis ribosome exhibits much slower rates of EF-G-catalyzed tRNA translocation than E. coli. Comparison and swapping of the EF-Gs and tRNAs between the two in vitro translation systems indicate that the slow translocation is likely an inherent property of the P. haloplanktis ribosome. Furthermore, our results demonstrate the varied extent of antibiotic inhibition on the P. haloplanktis minimal translation system, particularly when targeting processes related to translocation and peptide bond formation, compared to E. coli. In Paper III, we used ribosomes from bacterial species of diverse habitats to show that the ribosomes in vitro can maintain their catalytic activity beyond the survival temperature cutoff of the native host. Moreover, our results indicate that the thermostability of essential translation factors, EF-Tu and EF-G, dictates the upper limit of reaction temperature for translation elongation. Finally, we demonstrate that ribosomes from a psychrophile, mesophile, and thermophile can function in a vast temperature range of 10-70 °C, provided the translation factors remain structurally and functionally stable. Our results highlight the thermal versatility of the ribosome and reiterate the early emergence of a thermostable ribosomal core in the primordial RNA world.The outcome of this thesis will unveil some of the intricate mechanisms underlying the evolution of bacterial translation machinery. This knowledge may open up new research avenues regarding the emergence and diversification of bacteria and the development of new therapeutic strategies.
  •  
22.
  •  
23.
  • De Tarafder, Arindam, et al. (författare)
  • Kinetic Analysis Suggests Evolution of Ribosome Snecificity in Modern Elongation Factor-Tus from "Generalist" Ancestors
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:8, s. 3436-3444
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been hypothesized that early enzymes are more promiscuous than their extant orthologs. Whether or not this hypothesis applies to the translation machinery, the oldest molecular machine of life, is not known. Efficient protein synthesis relies on a cascade of specific interactions between the ribosome and the translation factors. Here, using elongation factor-Tu (EF-Tu) as a model system, we have explored the evolution of ribosome specificity in translation factors. Employing presteady state fast kinetics using quench flow, we have quantitatively characterized the specificity of two sequence-reconstructed 1.3- to 3.3-Gy-old ancestral EF-Tus toward two unrelated bacterial ribosomes, mesophilic Escherichia coil and thermophilic Thermus thermophilus. Although the modern EF-Tus show clear preference for their respective ribosomes, the ancestral EF-Tus show similar specificity for diverse ribosomes. In addition, despite increase in the catalytic activity with temperature, the ribosome specificity of the thermophilic EF-Tus remains virtually unchanged. Our kinetic analysis thus suggests that EF-Tu proteins likely evolved from the catalytically promiscuous, "generalist" ancestors. Furthermore, compatibility of diverse ribosomes with the modern and ancestral EF-Tus suggests that the ribosomal core probably evolved before the diversification of the EF-Tus. This study thus provides important insights regarding the evolution of modern translation machinery.
  •  
24.
  •  
25.
  • Degiacomi, Giulia, et al. (författare)
  • Micrococcin P1-A bactericidal thiopeptide active against Mycobacterium tuberculosis
  • 2016
  • Ingår i: Tuberculosis. - : Elsevier BV. - 1472-9792 .- 1873-281X. ; 100, s. 95-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation.
  •  
26.
  • Deroo, Stephanie, et al. (författare)
  • Mechanism and Rates of Exchange of L7/L12 between Ribosomes and the Effects of Binding EF-G
  • 2012
  • Ingår i: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 7:6, s. 1120-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by similar to 27% and of dimers by similar to 47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.
  •  
27.
  • Dos Reis, Suzana, et al. (författare)
  • Mode of action of the antiprion drugs 6AP and GA on ribosome assisted protein folding
  • 2011
  • Ingår i: Biochimie. - : Elsevier BV. - 0300-9084 .- 1638-6183. ; 93:6, s. 1047-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribosome, the protein synthesis machinery of the cell, has also been implicated in protein folding. This activity resides within the domain V of the main RNA component of the large subunit of the ribosome. It has been shown that two antiprion drugs 6-aminophenanthridine (GAP) and Guanabenz (GA) bind to the ribosomal RNA and inhibit specifically the protein folding activity of the ribosome. Here, we have characterized with biochemical experiments, the mode of inhibition of these two drugs using ribosomes or ribosomal components active in protein folding (referred to as 'ribosomal folding modulators' or RFMs) from both bacteria Escherichia con and yeast Saccharomyces cerevisiae, and human carbonic anhydrase (HCA) as a sample protein. Our results indicate that 6AP and GA inhibit the protein folding activity of the ribosome by competition with the unfolded protein for binding to the ribosome. As a result, the yield of the refolded protein decreases, but the rate of its refolding remains unaffected. Further, 6AP- and GA mediated inhibition of RFM mediated refolding can be reversed by the addition of RFMs in excess. We also demonstrate with delayed addition of the ribosome and the antiprion drugs that there is a short time-span in the range of seconds within which the ribosome interacts with the unfolded protein. Thus we conclude that the protein folding activity of the ribosome is conserved from bacteria to eukaryotes and most likely the substrate for RFMs is an early refolding state of the target protein.
  •  
28.
  • Eaglesfield, Ross, et al. (författare)
  • Cotranslational recruitment of ribosomes in protocells recreates a translocon-independent mechanism of proteorhodopsin biogenesis
  • 2021
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of lipid membranes and embedded proteins was essential for the evolution of cells. Translocon complexesmediate cotranslational recruitment and membrane insertion of nascent proteins, but they already contain membrane-integral proteins. Therefore, a simpler mechanism must exist, enabling spontaneous membrane integration while preventing aggregation of unchaperoned protein in the aqueous phase. Here, we used giant unilamellar vesicles encapsulating minimal translation components to systematically interrogate the requirements for insertion of the model protein proteorhodopsin (PR) - a structurally ubiquitousmembrane protein. We show that the N-terminal hydrophobic domain of PR is both necessary and sufficient for cotranslational recruitment of ribosomes to the membrane and subsequent membrane insertion of PR. Insertion of N-terminally truncated PR was restored by artificially attaching ribosomes to the membrane. Our findings offer a self-sufficient protein-inherent mechanism as a possible explanation for effective membrane protein biogenesis in a "pre-translocon'' era, and they offer new opportunities for generating artificial cells.
  •  
29.
  • Ederth, Josefine, et al. (författare)
  • A single-step method for purification of active His-tagged ribosomes from a genetically engineered Escherichia coli
  • 2009
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 37:2, s. e15-
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rapid development of the ribosome field in recent years a quick, simple and high-throughput method for purification of the bacterial ribosome is in demand. We have designed a new strain of Escherichia coli (JE28) by an in-frame fusion of a nucleotide sequence encoding a hexa-histidine affinity tag at the 3-end of the single copy rplL gene (encoding the ribosomal protein L12) at the chromosomal site of the wild-type strain MG1655. As a result, JE28 produces a homogeneous population of ribosomes (His)(6)-tagged at the C-termini of all four L12 proteins. Furthermore, we have developed a single-step, high-throughput method for purification of tetra-(His)(6)-tagged 70S ribosomes from this strain using affinity chromatography. These ribosomes, when compared with the conventionally purified ones in sucrose gradient centrifugation, 2D-gel, dipeptide formation and a full-length protein synthesis assay showed higher yield and activity. We further describe how this method can be adapted for purification of ribosomal subunits and mutant ribosomes. These methodologies could, in principle, also be used to purify any functional multimeric complex from the bacterial cell.
  •  
30.
  • Emmerich, Andrew (författare)
  • Cryo-EM and Computational Biology of Macromolecular Complexes
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The ribosome is a large, ancient multicomponent macromolecular complex which is highly amenable to study by cryogenic electron microscopy (cryo-EM) and computation biology methods. This thesis delves into the structure of both prokaryotic and eukaryotic ribosomes in the context of determining a solution to emerging antimicrobial resistance. We show that thermorubin (THB) binds to the E. coli ribosome at intersubunit bridge B2a, flipping out 23S rRNA residue C1914 which interferes with A-site substrates. The position and rearrangements caused by THB also accounts for the biochemical results showing a decrease in elongation, termination and recycling phases of translation. Also using cryo-EM we looked at the Giardia intestinalis ribosome, determining six high-resolution structures representing translocation intermediates. Giardia is a protozoan parasite causing diarrhoea in humans, with metronidazole strains emerging. As the ribosome is often a target for antimicrobial drugs, work on the structure and function of the ribosome is of utmost important in determining an alternative therapeutic approach to the treatment of giardiasis. We also show naturally bound tRNAs and eEF2 on the Giardia ribosome, exhibiting eukaryote-specific subunit rolling and eEF2 with GDP in a uniquely positioned Pi primed for release, adding to the mechanism of translocation in protists as well as illustrating the evolution of both the structure and function of translation machinery. Finally, the molecular basis of thermostability in translational GTPases is explored using molecular dynamics of mesophilic and thermophilic elongation factor EF-Tu. Through ancestral sequence reconstruction two key interactions: in the GTPase domain; and an interdomain interaction were shown to be important in the overall structural stability of EF-Tu in high temperature environments. These studies together highlight the strength of utilising both structural and computational techniques to explore the translation apparatus.
  •  
31.
  • Feng, Boya, et al. (författare)
  • Structural and Functional Insights into the Mode of Action of a Universally Conserved Obg GTPase
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 12:5, s. e1001866-
  • Tidskriftsartikel (refereegranskat)abstract
    • Obg proteins are a family of P-loop GTPases, conserved from bacteria to human. The Obg protein in Escherichia coli (ObgE) has been implicated in many diverse cellular functions, with proposed molecular roles in two global processes, ribosome assembly and stringent response. Here, using pre-steady state fast kinetics we demonstrate that ObgE is an anti-association factor, which prevents ribosomal subunit association and downstream steps in translation by binding to the 50S subunit. ObgE is a ribosome dependent GTPase; however, upon binding to guanosine tetraphosphate (ppGpp), the global regulator of stringent response, ObgE exhibits an enhanced interaction with the 50S subunit, resulting in increased equilibrium dissociation of the 70S ribosome into subunits. Furthermore, our cryo-electron microscopy (cryo-EM) structure of the 50S? ObgE? GMPPNP complex indicates that the evolutionarily conserved N-terminal domain (NTD) of ObgE is a tRNA structural mimic, with specific interactions with peptidyl-transferase center, displaying a marked resemblance to Class I release factors. These structural data might define ObgE as a specialized translation factor related to stress responses, and provide a framework towards future elucidation of functional interplay between ObgE and ribosome-associated (p) ppGpp regulators. Together with published data, our results suggest that ObgE might act as a checkpoint in final stages of the 50S subunit assembly under normal growth conditions. And more importantly, ObgE, as a (p) ppGpp effector, might also have a regulatory role in the production of the 50S subunit and its participation in translation under certain stressed conditions. Thus, our findings might have uncovered an under-recognized mechanism of translation control by environmental cues.
  •  
32.
  • Fislage, Marcus, et al. (författare)
  • Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-Tu(H84A)
  • 2018
  • Ingår i: Nucleic Acids Research. - : OXFORD UNIV PRESS. - 0305-1048 .- 1362-4962. ; 46:11, s. 5861-5874
  • Tidskriftsartikel (refereegranskat)abstract
    • The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of themonitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.
  •  
33.
  • Gao, Haixiao, et al. (författare)
  • RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors
  • 2007
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 129:5, s. 929-941
  • Tidskriftsartikel (refereegranskat)abstract
    • During translation termination, class II release factor RF3 binds to the ribosome to promote rapid dissociation of a class I release factor (RF) in a GTP-dependent manner. We present the crystal structure of E. coli RF3•GDP, which has a three-domain architecture strikingly similar to the structure of EF-Tu•GTP. Biochemical data on RF3 mutants show that a surface region involving domains II and III is important for distinct steps in the action cycle of RF3. Furthermore, we present a cryo-electron microscopy (cryo-EM) structure of the posttermination ribosome bound with RF3 in the GTP form. Our data show that RF3•GTP binding induces large conformational changes in the ribosome, which break the interactions of the class I RF with both the decoding center and the GTPase-associated center of the ribosome, apparently leading to the release of the class I RF.
  •  
34.
  • Ge, Xueliang, et al. (författare)
  • Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:18, s. 4649-4654
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12–IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12–IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners—all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.
  •  
35.
  • Ge, Xueliang, et al. (författare)
  • Inhibition of translation termination by small molecules targeting ribosomal release factors
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial ribosome is an important drug target for antibiotics that can inhibit different stages of protein synthesis. Among the various classes of compounds that impair translation there are, however, no known small-molecule inhibitors that specifically target ribosomal release factors (RFs). The class I RFs are essential for correct termination of translation and they differ considerably between bacteria and eukaryotes, making them potential targets for inhibiting bacterial protein synthesis. We carried out virtual screening of a large compound library against 3D structures of free and ribosome-bound RFs in order to search for small molecules that could potentially inhibit termination by binding to the RFs. Here, we report identification of two such compounds which are found both to bind free RFs in solution and to inhibit peptide release on the ribosome, without affecting peptide bond formation.
  •  
36.
  • González-López, Adrián, et al. (författare)
  • Structural mechanism of FusB-mediated rescue from fusidic acid inhibition of protein synthesis
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Antibiotic resistance protein FusB rescues protein synthesis from inhibition by fusidic acid (FA), which locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis. Here, we present time-resolved single-particle cryo-EM structures explaining the mechanism of FusB-mediated rescue. FusB binds to the FA-trapped EF-G on the ribosome, causing large-scale conformational changes of EF-G that break ribosome interactions. This leads to dissociation of EF-G from the ribosome, followed by FA release. We also observe two independent binding sites of FusB on the classical-state ribosome, overlapping with the binding site of EF-G to each of the ribosomal subunits, yet not inhibiting tRNA delivery. Our results reveal an intricate resistance mechanism involving specific interactions of FusB with both EF-G and the ribosome, and a non-canonical release pathway of EF-G.
  •  
37.
  • González-López, Adrián, et al. (författare)
  • Structures of the Staphylococcus aureus ribosome inhibited by fusidic acid and fusidic acid cyclopentane
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.
  •  
38.
  • Guo, Xiaohu, et al. (författare)
  • Structure and function of FusB : an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling
  • 2012
  • Ingår i: Open Biology. - : The Royal Society. - 2046-2441. ; 2, s. 120016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 angstrom crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G-ribosome complex.
  •  
39.
  • Helgstrand, Magnus, et al. (författare)
  • The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain
  • 2007
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 365:2, s. 468-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient protein synthesis in bacteria requires initiation factor 2 (IF2), elongation factors Tu (EF-Tu) and G (EF-G), and release factor 3 (RF3), each of which catalyzes a major step of translation in a GTP-dependent fashion. Previous reports have suggested that recruitment of factors to the ribosome and subsequent GTP hydrolysis involve the dimeric protein L12, which forms a flexible "stalk" on the ribosome. Using heteronuclear NMR spectroscopy we demonstrate that L12 binds directly to the factors IF2, EF-Tu, EF-G, and RF3 from Escherichia coli, and map the region of L12 involved in these interactions. Factor-dependent chemical shift changes show that all four factors bind to the same region of the C-terminal domain of L12. This region includes three strictly conserved residues, K70, L80, and E82, and a set of highly conserved residues, including V66, A67, V68 and G79. Upon factor binding, all NMR signals from the C-terminal domain become broadened beyond detection, while those from the N-terminal domain are virtually unaffected, implying that the C-terminal domain binds to the factor, while the N-terminal domain dimer retains its rotational freedom mediated by the flexible hinge between the two domains. Factor-dependent variations in linewidths further reveal that L12 binds to each factor with a dissociation constant in the millimolar range in solution. These results indicate that the L12-factor complexes will be highly populated on the ribosome, because of the high local concentration of ribosome-bound factor with respect to L12.
  •  
40.
  • Holm, Mikael, 1984- (författare)
  • A tale of two antibiotics : Fusidic acid and Viomycin
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Antibiotics that target the bacterial ribosome make up about half of all clinically used antibiotics. We have studied two ribosome targeting drugs: Fusidic acid and Viomycin. Fusidic acid inhibits bacterial protein synthesis by binding to elongation factor G (EF-G) on the ribosome, thereby inhibiting translocation of the bacterial ribosome. Viomycin binds directly to the ribosome and inhibits both the fidelity of mRNA decoding and translocation. We found that the mechanisms of inhibition of these two antibiotics were unexpectedly complex. Fusidic acid can bind to EF-G on the ribosome during three separate stages of translocation. Binding of the drug to the first and most sensitive state does not lead to stalling of the ribosome. Rather the ribosome continues unhindered to a downstream state where it stalls for around 8 seconds. Dissociation of fusidic acid from this state allows the ribosome to continue translocating but it soon reaches yet another fusidic acid sensitive state where it can be stalled again, this time for 6 seconds. Viomycin inhibits translocation by binding to the pre-translocation ribosome in competition with EF-G. If viomycin binds before EF-G it stalls the ribosome for 44 seconds, much longer than a normal elongation cycle. Both viomycin and fusidic acid probably cause long queues of ribosomes to build up on the mRNA when they bind. Viomycin inhibits translational fidelity by binding to the ribosome during initial selection. We found that the concentration of viomycin required to bind to the ribosome with a given probability during decoding is proportional to the accuracy of the codon∙anticodon pair being decoded. This demonstrated that long standing models about ribosomal accuracy cannot be correct. Finally, we demonstrated that a common viomycin resistance mutation increases the drug binding rate and decreases its dissociation rate. Our results demonstrate that ribosome targeting drugs have unexpectedly complex mechanisms of action. Both fusidic acid and viomycin preferentially bind to conformations of the ribosome other than those that they stabilize. This suggests that determining the structures of stable drug-bound states may not give sufficient information for drug design.
  •  
41.
  •  
42.
  • Holm, Mikael, 1984-, et al. (författare)
  • Insights into the fidelity mechanism of mRNA decoding from characterization of viomycin induced miscoding in translation
  • 2024
  • Tidskriftsartikel (refereegranskat)abstract
    • Using pre-steady state kinetics and an E. coli based in vitro translation system we have studied the effect of the antibiotic viomycin on mRNA decoding. We find that viomycin binds to the ribosome during initial selection of tRNA, after binding of ternary complex but before GTP hydrolysis by EF-Tu. Viomycin binding renders the ribosome completely incapable of rejecting incorrect A-site bound tRNAs in both initial selection and proofreading. Viomycin sensitivity correlates with the accuracy of initial selection for the four different codon·anticodon pairs tested here. Our results demonstrate that, in contrast to current ideas about ‘induced-fit’, accuracy in initial selection is achieved primarily by increased dissociation rates for near-cognate tRNAs rather than by decreased rates of GTP hydrolysis. Further, our results imply that the ‘monitoring’ bases A1492 and A1493 rapidly fluctuate between active and inactive conformations when a near-cognate tRNA is present in the A site.
  •  
43.
  • Holm, Mikael, et al. (författare)
  • Molecular mechanism of viomycin inhibition of peptide elongation in bacteria
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:4, s. 978-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Viomycin is a tuberactinomycin antibiotic essential for treating multi-drug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of similar to 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.
  •  
44.
  • Holm, Mikael, 1984-, et al. (författare)
  • The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation
  • 2019
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.
  •  
45.
  • Huang, Chenhui, et al. (författare)
  • The Ribosomal Stalk Plays a Key Role in IF2-Mediated Association of the Ribosomal Subunits
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 399:1, s. 145-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribosomal "stalk" protein L12 is known to activate translational GTPases EF-G and EF-Tu, but not much is known about its role in relation to other two translational G factors, IF2 and RF3. Here, we have clarified the role of L12 in IF2-mediated initiation of bacterial protein synthesis. With fast kinetics measurements, we have compared L12-depleted 50S subunits with the native ones in subunit association, GTP hydrolysis, Pi (inorganic phosphate) release and IF2 release assays. L12 depletion from 50S subunit slows the subunit association step significantly (similar to 40 fold) only when IF2.GTP is present on the 30S preinitiation complex. This demonstrates that rapid subunit association depends on a specific interaction between the L12 stalk on the 50S subunit and IF2.GTP on the 30S subunit. L12 depletion, however, did not affect the individual rates of the subsequent steps including GTP hydrolysis on IF2 and Pi release. Thus, L12 is not a GTPase activating protein (GAP) for IF2 unlike as suggested for EF-G and EF-Tu.
  •  
46.
  • Ibrahim Isak, Georgina, 1973- (författare)
  • Studies on Translation Initiation and Termination in Escherichia coli
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Translation initiation factor 1 (IF1) has been shown to be an RNA chaperone. In order to find functional interactions that IF1 may have with rRNA, we have isolated second-site suppressors of a cold-sensitive IF1 mutant. Joining of the ribosomal subunit seems to be affected in the IF1 mutant strain and the suppressive effect is a consequence of decreasing the available pool of mature 50S subunits. The results serve as additional evidence that IF1 is an RNA chaperone and that final maturation of the ribosome takes place during translation initiation. In this study we have also investigated the effect of a cold-sensitive mutant IF1 or kasugamycin addition on gene expression using a 2D gel electrophoresis technique. The effect is much more dramatic when cells are treated with kasugamycin compared to mutant IF1. The ybgF gene is uniquely sensitive to the IF1 mutation as well as the addition of kasugamycin. This effect on the native gene could be connected with some property of the TIR sequence of ybgF and supports the notion that kasugamycin addition and the IF1 cold-sensitive mutation have a similar TIR-specific effect on mRNA translation. Finally we have isolated a suppressor of a temperature-sensitive mutation in ribosomal release factor 1 (RF1) to shed more light on the translation termination process. The suppressor mutation is linked to an IS10 insertion into the cysB gene and results in a Cys- phenotype. Our results suggest that suppression of the thermosensitive growth is a consequence of the mnm5s2U hypomodification of certain tRNA species. The ability of mnm5s2U hypomodified tRNA to induce frameshifting may be responsible for the suppression mechanism and it supports the hypothesis that modified nucleosides in the anticodon of tRNA act in part to prevent frameshifting by the ribosome.
  •  
47.
  • Indrisiunaite, Gabriele (författare)
  • Accuracy of protein synthesis and its tuning by mRNA modifications
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The ribosome is a large macromolecular complex that synthesizes all proteins in the cell in all kingdoms of life. Proteins perform many vital functions, ranging from catalysis of biochemical reactions to muscle movement. It is essential for cells and organisms that proteins are synthesized rapidly and accurately.This thesis addresses two questions regarding the accuracy of protein synthesis. How do bacterial and eukaryotic release factors ensure accurate termination? How do mRNA modifications affect the accuracy of bacterial protein synthesis?Bacterial release factors 1 (RF1) and 2 (RF2) are proteins that recognize the stop codons of mRNA and catalyze the release of a synthesized protein chain from the ribosome. It has been proposed that RFs ensure accurate termination by binding to the ribosome in an inactive, compact conformation and acquire a catalytically active, extended conformation only after recognizing a correct stop codon. However, the native compact conformation was too short-lived to be captured by conventional structural methods. We have developed a fast-kinetics approach for determining when the RFs are in a compact conformation on the ribosome and then used time-resolved cryogenic electron microscopy to capture the compact conformations of native RF1 and RF2 bound to a stop codon. We have also measured the effect of eukaryotic release factor 3 (eRF3) on the rate and accuracy of peptide release by eukaryotic release factor 1 (eRF1) in a yeast (Saccharomyces cerevisiae) in vitro translation system.Modifications of mRNA nucleotides are post-transcriptional regulators of gene expression, but little is known about their role in protein synthesis. We have studied the effect on accuracy of protein synthesis by two of these modifications: 2’-O-methylation and N6-methylation of adenosine. 2’-O-methylation greatly reduced the maximal rate (kcat) and efficiency (kcat/Km) of cognate (correct) codon reading by decreasing the initial GTPase activity in elongation factor Tu and enhancing proofreading losses of cognate aminoacyl-tRNAs. Remarkably, N6-methylation reduced the efficiency of codon reading by cognate aminoacyl-tRNAs and release factors, leaving the efficiency of the corresponding non-cognate reactions much less affected. 
  •  
48.
  • Jenvert, Rose-Marie, 1973- (författare)
  • The ribosome, stringent factor and the bacterial stringent response
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The stringent response plays a significant role in the survival of bacteria during different environmental conditions. It is activated by the binding of stringent factor (SF) to stalled ribosomes that have an unacylated tRNA in the ribosomal A-site which leads to the synthesis of (p)ppGpp. ppGpp binds to the RNA polymerase, resulting in a rapid down-regulation of rRNA and tRNA transcription and up-regulation of mRNAs coding for enzymes involved in amino acid biosynthesis. The importance of the A-site and unacylated tRNA in the activation of SF was confirmed by chemical modification and subsequent primer extension experiments (footprinting experiments) which showed that binding of SF to ribosomes resulted in the protection of regions in 23S rRNA, the A-loop and helix 89 that are involved in the binding of the A-site tRNA. An in vitro assay showed that the ribosomal protein L11 and its flexible N-terminal part was important in the activation of SF. Interestingly the N-terminal part of L11 was shown to activate SF on its own and this activation was dependent on both ribosomes and an unacylated tRNA in the A-site. The N-terminal part of L11 was suggested to mediate an interaction between ribosome-bound SF and the unacylated tRNA in the A-site or interact with SF and the unacylated tRNA independently of each other. Footprinting experiments showed that SF bound to the ribosome protected bases in the L11 binding domain of the ribosome that were not involved in an interaction with ribosomal protein L11. The sarcin/ricin loop, in close contact with the L11 binding domain on the ribosome and essential for the binding and activation of translation elongation factors was also found to be protected by the binding of SF. Altogether the presented results suggest that SF binds to the factor-binding stalk of the ribosome and that activation of SF is dependent on the flexible N-terminal domain of L11 and an interaction of SF with the unacylated tRNA in the A-site of the 50S subunit.
  •  
49.
  • Kacar, Betuel, et al. (författare)
  • Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein
  • 2017
  • Ingår i: Journal of Molecular Evolution. - : SPRINGER. - 0022-2844 .- 1432-1432. ; 84:2-3, s. 69-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to design synthetic genes and engineer biological systems at the genome scale opens new means by which to characterize phenotypic states and the responses of biological systems to perturbations. One emerging method involves inserting artificial genes into bacterial genomes and examining how the genome and its new genes adapt to each other. Here we report the development and implementation of a modified approach to this method, in which phylogenetically inferred genes are inserted into a microbial genome, and laboratory evolution is then used to examine the adaptive potential of the resulting hybrid genome. Specifically, we engineered an approximately 700-million-year-old inferred ancestral variant of tufB, an essential gene encoding elongation factor Tu, and inserted it in a modern Escherichia coli genome in place of the native tufB gene. While the ancient homolog was not lethal to the cell, it did cause a twofold decrease in organismal fitness, mainly due to reduced protein dosage. We subsequently evolved replicate hybrid bacterial populations for 2000 generations in the laboratory and examined the adaptive response via fitness assays, whole genome sequencing, proteomics, and biochemical assays. Hybrid lineages exhibit a general adaptive strategy in which the fitness cost of the ancient gene was ameliorated in part by upregulation of protein production. Our results suggest that an ancient-modern recombinant method may pave the way for the synthesis of organisms that exhibit ancient phenotypes, and that laboratory evolution of these organisms may prove useful in elucidating insights into historical adaptive processes.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 111
Typ av publikation
tidskriftsartikel (71)
annan publikation (20)
doktorsavhandling (14)
forskningsöversikt (5)
konferensbidrag (1)
Typ av innehåll
refereegranskat (72)
övrigt vetenskapligt/konstnärligt (39)
Författare/redaktör
Sanyal, Suparna (98)
Ge, Xueliang (19)
Ehrenberg, Måns (14)
Mandava, Chandra Sek ... (13)
Koripella, Ravi Kira ... (10)
Pang, Yanhong (8)
visa fler...
Selmer, Maria (7)
Banerjee, Debapriya (6)
Majumdar, Soneya (6)
Holm, Mikael (6)
Bouakaz, Lamine (6)
Peisker, Kristin (6)
Kovachev, Petar Stef ... (6)
Frank, Joachim (5)
Voisset, Cecile (5)
Blondel, Marc (5)
Pundir, Shreya (4)
Chen, Yang (4)
Sanyal, Biplab (4)
Liljas, Anders (4)
Vovusha, Hakkim (4)
Oumata, Nassima (4)
Gao, Ning (4)
Andersson, Dan I. (3)
Aguirre Rivera, Javi ... (3)
Johansson, Magnus (3)
Janson, Jan-Christer (3)
Åqvist, Johan (3)
Pavlov, Michael Y. (3)
Dasgupta, Santanu (3)
Cordeiro, Yraima (3)
Silva, Jerson L. (3)
Näsvall, Joakim (2)
Larsson, Jimmy, 1977 ... (2)
Seefeldt, A. Carolin (2)
Svärd, Staffan (2)
Akke, Mikael (2)
Larsson, Daniel (2)
Bergfors, Terese (2)
Mulder, Frans (2)
Pavlov, Michael (2)
Lind, Christoffer (2)
Ott, Martin, Profess ... (2)
Li, Wen (2)
Borg, Anneli (2)
Bouakaz, Elli (2)
Cao, Wei (2)
Chai, Qian (2)
Singh, Bhupender (2)
Emmerich, Andrew G. (2)
visa färre...
Lärosäte
Uppsala universitet (106)
Lunds universitet (4)
Stockholms universitet (3)
Umeå universitet (2)
Södertörns högskola (2)
Karolinska Institutet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (108)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (85)
Medicin och hälsovetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy