SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sasa N) "

Sökning: WFRF:(Sasa N)

  • Resultat 1-48 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Namkoong, H, et al. (författare)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
2.
  •  
3.
  • Wang, QBS, et al. (författare)
  • The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
  •  
4.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
5.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
6.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
7.
  • Kassebaum, Nicholas J., et al. (författare)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1603-1658
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs off set by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2.9 years (95% uncertainty interval 2.9-3.0) for men and 3.5 years (3.4-3.7) for women, while HALE at age 65 years improved by 0.85 years (0.78-0.92) and 1.2 years (1.1-1.3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum.
  •  
8.
  • Griswold, Max G., et al. (författare)
  • Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 392:10152, s. 1015-1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older.Methods: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health.Findings: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week.Interpretation: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.
  •  
9.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
10.
  • Barty, A., et al. (författare)
  • Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885 .- 1749-4893. ; 6:1, s. 35-40
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1, 2, 3, 4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
  •  
11.
  • Filipe, A., et al. (författare)
  • White Book on Physical and Rehabilitation Medicine in Europe Introductions, Executive Summary, and Methodology
  • 2018
  • Ingår i: European Journal of Physical and Rehabilitation Medicine. - : Edizioni Minerva Medica. - 1973-9087 .- 1973-9095. ; 54:2, s. 125-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The White Book (WB) of Physical and Rehabilitation Medicine (PRM) in Europe is produced by the 4 European PRM Bodies (European Academy of Rehabilitation Medicine - EARM, European Society of PRM - ESPRM, European Union of Medical Specialists - PRM Section, European College of PRM-ECPRM served by the European Union of Medical Specialists-PRM Board) and constitutes the reference book for PRM physicians in Europe. It has now reached its third edition; the first was published in 1989 and the second in 2006/2007. The WB has multiple purposes, including providing a unifying framework for European countries, to inform decision-makers on European and national level, to offer educational material for PRM trainees and physicians and information about PRM to the medical community, other rehabilitation professionals and the public. The WB states the importance of PRM, a primary medical specialty that is present all over Europe, with a specific corpus disciplinae, a common background and history throughout Europe. PRM is internationally recognized and a partner of major international bodies, including the World Health Organization (WHO). PRM activities are strongly based on the documents of the United Nations (UN) and WHO, such as the Convention of the Rights of Persons with Disabilities (2006), the World Report on Disability (2011), the WHO Global Disability Action Plan 2014-2021 (2014) and the WHO initiative "Rehabilitation 2030: a call for action" (2017). The WB is organized in 4 sections, 11 chapters and some appendices. The WB starts with basic definitions and concepts of PRM and continues with why rehabilitation is needed by individuals and society. Rehabilitation focuses not only on health conditions but also on functioning. Accordingly. PRM is the medical specialty that strives to improve functioning of people with a health condition or experiencing disability. The fundamentals of PRM, the history of the PRM specialty, and the structure and activities of PRM organizations in Europe are presented, followed by a thorough presentation of the practice of PRM, i.e. knowledge and skills of PRM physicians, the clinical field of competence of PRM, the place of the PRM specialty in the healthcare system and society, education and continuous professional development of PRM physicians, specificities and challenges of science and research in PRM. The WB concludes with the way forward for the specialty: challenges and perspectives for the future of PRM.
  •  
12.
  • Loh, N. Duane, et al. (författare)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
13.
  • Park, Hyung Joo, et al. (författare)
  • Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:23, s. 28729-28742
  • Tidskriftsartikel (refereegranskat)abstract
    • Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
  •  
14.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
15.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
16.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
17.
  • Johansson, Linda C, 1983, et al. (författare)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • Ingår i: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
18.
  • Kassemeyer, Stephan, et al. (författare)
  • Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:4, s. 4149-4158
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
  •  
19.
  • Koopmann, Rudolf, et al. (författare)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
20.
  • Lomb, Lukas, et al. (författare)
  • Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 84:21, s. 214111-1-214111-6
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
  •  
21.
  • Rath, Asawari D., et al. (författare)
  • Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser
  • 2014
  • Ingår i: Optics Express. - 1094-4087. ; 22:23, s. 28914-28925
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a Mach-Zehnder type autocorrelator to split and delay XUV pulses from the FLASH soft X-ray laser for triggering and subsequently probing the explosion of aerosolised sugar balls. FLASH was running at 182 eV photon energy with pulses of 70 fs duration. The delay between the pump-probe pulses was varied between zero and 5 ps, and the pulses were focused to reach peak intensities above 1016 W/cm2 with an off-axis parabola. The direct pulse triggered the explosion of single aerosolised sucrose nano-particles, while the delayed pulse probed the exploding structure. The ejected ions were measured by ion time of flight spectrometry, and the particle sizes were measured by coherent diffractive imaging. The results show that sucrose particles of 560-1000 nm diameter retain their size for about 500 fs following the first exposure. Significant sample expansion happens between 500 fs and 1 ps. We present simulations to support these observations.
  •  
22.
  • Seibert, M. Marvin, et al. (författare)
  • Femtosecond diffractive imaging of biological cells
  • 2010
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 43:19, s. 194015-
  • Tidskriftsartikel (refereegranskat)abstract
    • In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 angstrom during the pulse.
  •  
23.
  • Seibert, M. Marvin, et al. (författare)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
24.
  • Wang, Haidong, et al. (författare)
  • Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015 : the Global Burden of Disease Study 2015.
  • 2016
  • Ingår i: The lancet. HIV. - : Elsevier. - 2352-3018. ; 3:8, s. e361-e387
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.METHODS: For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification.FINDINGS: Global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1-3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5-2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6-40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7-1·9 million) in 2005, to 1·2 million deaths (1·1-1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections.INTERPRETATION: Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030.
  •  
25.
  • Yoon, Chun Hong, et al. (författare)
  • Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering
  • 2011
  • Ingår i: Optics Express. - 1094-4087. ; 19:17, s. 16542-16549
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
  •  
26.
  • Bajt, Sasa, et al. (författare)
  • Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser
  • 2008
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 47:10, s. 1673-1683
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10(14) W/cm2. The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance.
  •  
27.
  • Barty, Anton, et al. (författare)
  • Ultrafast single-shot diffraction imaging of nanoscale dynamics
  • 2008
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 2:7, s. 415-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The transient nanoscale dynamics of materials on femtosecond to picosecond timescales is of great interest in the study of condensed phase dynamics such as crack formation, phase separation and nucleation, and rapid fluctuations in the liquid state or in biologically relevant environments. The ability to take images in a single shot is the key to studying non-repetitive behaviour mechanisms, a capability that is of great importance in many of these problems. Using coherent diffraction imaging with femtosecond X-ray free-electron-laser pulses we capture time-series snapshots of a solid as it evolves on the ultrafast timescale. Artificial structures imprinted on a Si3N4 window are excited with an optical laser and undergo laser ablation, which is imaged with a spatial resolution of 50 nm and a temporal resolution of 10 ps. By using the shortest available free-electron-laser wavelengths(1) and proven synchronization methods(2) this technique could be extended to spatial resolutions of a few nanometres and temporal resolutions of a few tens of femtoseconds. This experiment opens the door to a new regime of time-resolved experiments in mesoscopic dynamics.
  •  
28.
  • Beyerlein, Kenneth, et al. (författare)
  • Ultrafast non-thermal heating of water initiated by an X-ray laser
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:22, s. 5652-5657
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
  •  
29.
  • Bogan, Michael J., et al. (författare)
  • Aerosol Imaging with a Soft X-Ray Free Electron Laser
  • 2010
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 44:3, s. I-VI
  • Tidskriftsartikel (refereegranskat)abstract
    • Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft x-ray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7–32 nm x-rays with 1012 photons per pulse. The high brightness, short wavelength, and high repetition rate (> 500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatial- and time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.
  •  
30.
  • Bogan, Michael J, et al. (författare)
  • Single particle X-ray diffractive imaging
  • 2008
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 8:1, s. 310-6
  • Tidskriftsartikel (refereegranskat)abstract
    • In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.
  •  
31.
  • Chapman, Henry N., et al. (författare)
  • Femtosecond diffractive imaging with a soft-X-ray free-electron laser
  • 2006
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 2:12, s. 839-843
  • Tidskriftsartikel (refereegranskat)abstract
    • Theory predicts(1-4) that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 x 10(13) W cm(-2) pulse, containing 10(12) photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling(5-9), shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one(10).
  •  
32.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond time-delay X-ray holography
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 448:7154, s. 676-679
  • Tidskriftsartikel (refereegranskat)abstract
    • Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment1, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging2, 3 can be used to achieve high resolution, beyond radiation damage limits for biological samples4. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.
  •  
33.
  • Dragasevic, N T, et al. (författare)
  • Cortical excitability revealed by motor evoked potential, cortical silent period and conduction time in spinocerebellar ataxias type 1, type 2 and idiopathic sporadic cerebellar ataxia : a transcranial magnetic stimulation study
  • 2006
  • Ingår i: The Movement Disorder Society’s 10th International Congress of Parkinson’s Disease and Movement.
  • Konferensbidrag (populärvet., debatt m.m.)abstract
    • Autosomal dominant cerebellar ataxias are characterized by their underlying genetic defect and are referred to as spinocerebellar ataxias (SCAs 1-23). The clinical classification of the SCA has been difficult owing to variations and overlapping of the clinical signs. The aim of this study was to compare cortical motor evoked potential (MEP), central motor conduction time (CMCT) and cortical silent period (CSP) duration in SCA patients in Serbia, namely in genetically  homogenous groups of ataxia patients with type 1, type 2 and IDCA (idiopathic sporadic cerebellar ataxia). We examined 29 patients, 16 with the diagnosis of SCA 1, 6 SCA 2 and 7 IDCA patients. Eight healthy control subjects were gender and age matched. Transcranial magnetic stimulation (TMS) was used to investigate parameters of cortical excitability such as: motor threshold (MT) and MEP, CSP and CMCT. MT was established at rest, MEP was calculated as the area in the rectified EMG recording. CSP was evoked by 30% suprathreshold stimulation while subjects activated FDI muscle with contraction of 30% of their MVC. CMCT was calculated as a difference between the shortest MEP latency after cortical and after cervical stimulation (in the region of C5-C6). Results show that MT was increased in all ataxia patient groups, compared to control subjects. CMCT has significant increase in SCA 1 patients. CSP in IDCA patients is significantly longer then in SCA 1, SCA 2 and control subjects, while no difference was found between SCA 1, SCA 2 and control. MEP duration was significantly increased in all ataxia groups compared to control in relaxed muscle. Due to the cerebellar influence on the cortico-spinal system through control of inhibitory cortical interneurons, could be assumed that different categories of ataxia patients have disturbed cerebellar inhibitory influence to the various degrees. It might be possible that SCA 1 prominent abnormalities in cortical excitability originate from expansion of damage from cerebellum to some other cerebellar and brain structures.
  •  
34.
  • Hau-Riege, Stefan P., et al. (författare)
  • Sacrificial Tamper Slows Down Sample Explosion in FLASH Diffraction Experiments
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:6, s. 064801-
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1 nm resolution imaging feasible.
  •  
35.
  • Knoška, Juraj, et al. (författare)
  • Ultracompact 3D microfluidics for time-resolved structural biology
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s−1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.
  •  
36.
  • Kuepper, Jochen, et al. (författare)
  • X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:8, s. 083002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
  •  
37.
  • Leontowich, Adam F. G., et al. (författare)
  • Characterizing the focus of a multilayer coated off-axis parabola for FLASH beam at lambda = 4.3 nm
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • A super-polished substrate with an off-axis parabola figure was coated with a Sc/B4C/Cr multilayer. This optic was used to focus pulses of 4.3 nm photons from the Free-electron LASer in Hamburg (FLASH) at normal incidence. Beam imprints were made in poly(methyl methacrylate) to align the optic and to measure the beam profile at the focal plane. The intense interaction resulted in imprints with raised perimeters, surrounded by ablated material extending out several micrometres. These features interfere with the beam profile measurement. The effect of a post-exposure development step on the beam imprints was investigated.
  •  
38.
  • Li, Tang, et al. (författare)
  • Dose-efficient scanning Compton X-ray microscopy
  • 2023
  • Ingår i: Light: Science and Applications. - 2095-5545. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.
  •  
39.
  • Marchesini, Stefano, et al. (författare)
  • Massively parallel X-ray holography
  • 2008
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 2:9, s. 560-563
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography(1,2,3) as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array(4) placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude-and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.
  •  
40.
  • Nass, Karol, et al. (författare)
  • Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
  • 2015
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 22:2, s. 225-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe–4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe–4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.
  •  
41.
  • Pedersoli, Emanuele, et al. (författare)
  • Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser
  • 2011
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 82:4, s. 043711-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.
  •  
42.
  • Prasciolu, Mauro, et al. (författare)
  • On the use of multilayer Laue lenses with X-ray free electron lasers
  • 2021
  • Ingår i: International Conference on X-Ray Lasers 2020. - : SPIE. - 0277-786X .- 1996-756X. - 9781510646186 ; 11886
  • Konferensbidrag (refereegranskat)abstract
    • We report on the use of multilayer Laue lenses to focus the intense X-ray Free Electron Laser (XFEL) beam at the European XFEL to a spot size of a few tens of nanometers. We present the procedure to align and characterize these lenses and discuss challenges working with the pulse trains from this unique X-ray source.
  •  
43.
  • Radovanovic, Sasa, et al. (författare)
  • Disturbed cerebellar input affects consecutive movement performance : Comparison of healthy subjects and patients with cerebellar ataxia
  • 2005
  • Ingår i: The 16th International Congress on Parkinson's Disease and Related Disorders. ; , s. 245-
  • Konferensbidrag (refereegranskat)abstract
    • Objective The cerebellum should be involved in providing temporal computations in motor production. The inability to compute time differences would affect time-related tasks. However, the cerebellar role in proprioception to control precise movement performance is still contradictory. The aim of the study was to investigate the characteristics of performance of the rapid terminal movements in patients with cerebellar ataxia. Ataxia of these patients had been identified as "pure" spinocerebellar ataxia. Method Movement performance was compared in six patients and six healthy subjects. Movements were performed from the initial to the target position, with the movement length of 40 degree in the elbow flexion. First, motor threshold of the motor cortex was determined. TMS was then applied with the double-cone coil right of the inion, in the two experimental conditions: stimulus was applied with the strength of 5% below the established motor threshold, at the moment of computer generated tone command to start the flexion movement, or stimulus was applied 20 ms before the GO signal, with the same strength. Two additional conditions were also tested: TM stimulus was applied with the strength of 30% above the motor threshold at the moment of movement start, and at 20 ms before movement start. Results Results point toward extension of the performed movement when stimulus was applied 20 ms before the movement start. Patients show tendency to lengthen their movements, and therefore accuracy of the movements deteriorate. Length of the movements was also prolonged in the conditions where stronger stimulus was applied, but accuracy was less affected with increase in the stimulus strength. Conclusion Accuracy of the movements was affected when the stimulus was applied in the phase of the movement preparation. Disturbance of the preparatory processes to establish correct movement pattern appear to be important even in the patients with pure cerebellar ataxia.
  •  
44.
  • Radovanovic, Sasa, et al. (författare)
  • Effects of transcranial magnetic stimulation of the cerebellum on performance of consecutive rapid movements in patients with idiopathic sporadic cerebellar ataxia and healthy subjects
  • 2006
  • Ingår i: The Movement Disorder Society’s 10th International Congress of Parkinson’s Disease and Movement.
  • Konferensbidrag (populärvet., debatt m.m.)abstract
    • It is known that cerebellum influences the action of the motor system. The cerebellum may exert a facilitatory influence in the motor cortex, and should be involved in temporal computations in movement performance. The inability to compute time differences would affect time-related tasks. However, the cerebellar role to control precise movement performance is contradictory. Furthermore, facilitatory effect of cerebellum might be decreased in cerebellar degeneration. The aim of the study was to investigate the performance of the rapid movements in patients with “pure” cerebellar ataxia. Movement performance was compared in 13 patients and 8 healthy subjects. Movements were performed from the initial to the target position, with the movement length of 40 deg in the elbow flexion. Motor threshold (MT) of the motor cortex was determined and TMS was then applied right of the inion, in two conditions: With the strength of 5% below the MT, at the moment of command to start the flexion movement, and with the same strength 20 ms before the movement start. Two additional conditions were also tested: TM stimulus was applied with the strength of 30% above the MT at the moment of movement start, and at 20 ms before movement start. Patients perform significantly longer movements then healthy subjects, and accuracy of the movements deteriorates. Length of the movements was also prolonged in the conditions where stronger stimulus was applied. Accuracy of the movements in patients was not different when the stimulus was applied in the phase of the movement preparation, compared in moment 0 and -20 ms. Same was true for healthy subjects in both conditions - stimulus below and above MT. Results that differences in disturbance timing and strength have no clear effects might speak for preprogrammed characteristics of rapid movements in both healthy subjects and ataxia patients, where sensory input is not of primary importance. Deficits in cerebellar ataxia for the movement length may be attributable to improper processing of motor command and/or sensory information.
  •  
45.
  •  
46.
  • Redecke, Lars, et al. (författare)
  • Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser.
  • 2013
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 339:6116, s. 227-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
  •  
47.
  • Trost, Fabian, et al. (författare)
  • Speckle contrast of interfering fluorescence X-rays
  • 2023
  • Ingår i: Journal of Synchrotron Radiation. - : International Union Of Crystallography. - 0909-0495 .- 1600-5775. ; 30:1, s. 11-23
  • Tidskriftsartikel (refereegranskat)abstract
    • With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity–intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration.
  •  
48.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-48 av 48
Typ av publikation
tidskriftsartikel (42)
konferensbidrag (6)
Typ av innehåll
refereegranskat (46)
populärvet., debatt m.m. (2)
Författare/redaktör
Bajt, Saša (32)
Chapman, Henry N. (30)
Barty, Anton (29)
Bogan, Michael J. (22)
Hajdu, Janos (21)
Frank, Matthias (19)
visa fler...
Seibert, M Marvin (18)
Aquila, Andrew (17)
Boutet, Sébastien (16)
Marchesini, Stefano (16)
Fleckenstein, Holger (15)
Schulz, Joachim (15)
Caleman, Carl (14)
Shoeman, Robert L (14)
Timneanu, Nicusor (14)
Maia, Filipe R. N. C ... (14)
Bostedt, Christoph (14)
Gumprecht, Lars (14)
Schlichting, Ilme (14)
Andreasson, Jakob (13)
Foucar, Lutz (13)
Barthelmess, Miriam (13)
Liang, Mengning (13)
Graafsma, Heinz (12)
Erk, Benjamin (12)
Rudenko, Artem (12)
Rolles, Daniel (12)
Martin, Andrew V. (12)
Hartmann, Robert (12)
Rudek, Benedikt (12)
White, Thomas A. (12)
Holl, Peter (12)
Kimmel, Nils (12)
Lomb, Lukas (12)
Nass, Karol (12)
Reich, Christian (12)
Soltau, Heike (12)
Hirsemann, Helmut (11)
Ekeberg, Tomas (11)
Coppola, Nicola (11)
DePonte, Daniel P. (11)
Epp, Sascha W. (11)
Hampton, Christina Y ... (11)
Kassemeyer, Stephan (11)
Doak, R Bruce (10)
Hartmann, Andreas (10)
Sierra, Raymond G. (9)
Hunter, Mark S. (9)
Starodub, Dmitri (9)
Stern, Stephan (9)
visa färre...
Lärosäte
Uppsala universitet (35)
Karolinska Institutet (10)
Göteborgs universitet (9)
Lunds universitet (8)
Högskolan Dalarna (7)
Chalmers tekniska högskola (5)
visa fler...
Högskolan i Gävle (4)
Sveriges Lantbruksuniversitet (4)
Umeå universitet (3)
Södertörns högskola (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)
Medicin och hälsovetenskap (11)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy