SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sassa Yasmine 1981) "

Sökning: WFRF:(Sassa Yasmine 1981)

  • Resultat 1-50 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Viktor, et al. (författare)
  • Photoelectron dispersion in metallic and insulating thin films
  • 2021
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanism behind the metal-to-insulator transition in is still a topic of intense debate. The two leading theoretical interpretations associate the transition with either electron-lattice or electron-electron correlations. Novel experimental results are required to converge towards one of the two scenarios. Here we report on a temperature-dependent angle-resolved photoelectron study of thin films across the metal-to-insulator transition. The obtained experimental results are compared to density functional theory calculations. We find an overall energy shift and compression of the electronic band structure across the transition while the overall band topology is conserved. The results demonstrate the importance of electron-electron correlations in establishing the insulating state.
  •  
2.
  • Benedek, Peter, et al. (författare)
  • Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials
  • 2020
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 12:14, s. 16243-16249
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed understanding of charge diffusion processes in a lithium-ion battery is crucial to enable its systematic improvement. Experimental investigation of diffusion at the interface between active particles and the electrolyte is challenging but warrants investigation as it can introduce resistances that, for example, limit the charge and discharge rates. Here, we show an approach to study diffusion at interfaces using muon spin spectroscopy. By performing measurements on LiFePO4 platelets with different sizes, we determine how diffusion through the LiFePO4 (010) interface differs from that in the center of the particle (i.e., bulk diffusion). We perform ab initio calculations to aid the understanding of the results and show the relevance of our interfacial diffusion measurement to electrochemical performance through cyclic voltammetry measurements. These results indicate that surface engineering can be used to improve the performance of lithium-ion batteries.
  •  
3.
  • Chen, Chih-Yao, et al. (författare)
  • High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries
  • 2020
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 56:65, s. 9272-9275
  • Tidskriftsartikel (refereegranskat)abstract
    • Honeycomb layered oxides from Na2Ni2-xCoxTeO6 family were assessed for use as positive electrodes in rechargeable sodium batteries at ambient and elevated temperatures using ionic liquids. Substitution of nickel with cobalt increases the discharge voltage to nearly 4 V (versus Na+/Na), surpassing the average voltages of most Na based layered oxide positive electrodes.
  •  
4.
  • Duan, Yu Xia, et al. (författare)
  • Crystal electric field splitting and f -electron hybridization in heavy-fermion CePt2In7
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9969 .- 2469-9950. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f5/21 and 4f7/21 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.  © 2019 American Physical Society.
  •  
5.
  • Elson, Frank, et al. (författare)
  • TRIM Simulations Tool for μ + Stopping Fraction in Hydrostatic Pressure Cells
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • For quantum systems or materials, a common procedure for probing their behaviour is to tune electronic/magnetic properties using external parameters, e.g. temperature, magnetic field or pressure. Pressure application as an external stimuli is a widely used tool, where the sample in question is inserted into a pressure cell providing a hydrostatic pressure condition. Such device causes some practical problems when using in Muon Spin Rotation/Relaxation (μ +SR) experiments as a large proportion of the muons will be implanted in the pressure cell rather than in the sample, resulting in a higher background signal. This issue gets further amplified when the temperature dependent response from the sample is much smaller than that of the pressure cell,which may cause the sample response to be lost in the background and cause difficulties in aligning the sample within the beam. To tackle this issue, we have used pySRIM [1] to construct a practical and helpful simulation tool for calculating muon stopping fractions, specifically for the pressure cell setup at the μE1 beamline using the GPD spectrometer at the Paul Scherrer Institute, with the use of TRIM simulations. The program is used to estimate the number of muon stopping in both the sample and the pressure cell at a given momentum. The simultion tool is programmed into a GUI, making it accessible to user to approximate prior to their experiments at GPD what fractions will belong to the sample and the pressure cell in their fitting procedure.
  •  
6.
  • Facio, Jorge I., et al. (författare)
  • Engineering a pure Dirac regime in ZrTe5
  • 2023
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-world topological semimetals typically exhibit Dirac and Weyl nodes that coexist with trivial Fermi pockets. This tends to mask the physics of the relativistic quasiparti-cles. Using the example of ZrTe5, we show that strain provides a powerful tool for in-situ tuning of the band structure such that all trivial pockets are pushed far away from the Fermi energy, but only for a certain range of Van der Waals gaps. Our results naturally reconcile contradicting reports on the presence or absence of additional pockets in ZrTe5, and provide a clear map of where to find a pure three-dimensional Dirac semimetallic phase in the structural parameter space of the material.
  •  
7.
  • Forslund, Ola Kenji, et al. (författare)
  • Intertwined magnetic sublattices in the double perovskite compound LaSrNiReO6
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9969 .- 2469-9950. ; 102:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a muon spin rotation (μ+SR) study of the magnetic properties of the double perovskite compound LaSrNiReO6. Using the unique length and time scales of the μ+SR technique, we successfully clarify the magnetic ground state of LaSrNiReO6, which was previously deemed as a spin glass state. Instead, our μ+SR results point toward a long-range dynamically ordered ground state below TC=23 K, for which a static limit is foreseen at T=0. Furthermore, between 23K250 K) state. Our results reveal how two separate yet intertwined magnetic lattices interact within the unique double perovskite structure and the importance of using complementary experimental techniques to obtain a complete understanding of the microscopic magnetic properties of complex materials.
  •  
8.
  • Forslund, Ola Kenji, 1990, et al. (författare)
  • Pressure driven magnetic order in Sr 1 - x Ca x Co 2 P 2
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic phase diagram of Sr1-xCaxCo2P2 as a function of hydrostatic pressure and temperature is investigated by means of high pressure muon spin rotation, relaxation and resonance (μ+SR). The weak pressure dependence for the x≠ 1 compounds suggests that the rich phase diagram of Sr1-xCaxCo2P2 as a function of x at ambient pressure may not solely be attributed to chemical pressure effects. The x= 1 compound on the other hand reveals a high pressure dependence, where the long range magnetic order is fully suppressed at pc 2≈ 9.8 kbar, which seem to be a first order transition. In addition, an intermediate phase consisting of magnetic domains is formed above pc 1≈ 8 kbar where they co-exist with a magnetically disordered state. These domains are likely to be ferromagnetic islands (FMI) and consist of an high- (FMI-1) and low-temperature (FMI-2) region, respectively, separated by a phase boundary at Ti≈ 20 K. This kind of co-existence is unusual and is originating from a coupling between lattice and magnetic degrees of freedoms.
  •  
9.
  • Galeski, S., et al. (författare)
  • Origin of the quasi-quantized Hall effect in ZrTe 5
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe . It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe electronic structure and its Dirac-type semi-metallic character.
  •  
10.
  • Ge, Yuqing, 1996, et al. (författare)
  • Confirming the high pressure phase diagram of the Shastry-Sutherland model
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • A Muon Spin Rotation (μ + SR) study was conducted to investigate the magnetic properties of SrCu2(BO3)2 (SCBO) as a function of temperature/pressure. Measurements in zero field and transverse field confirm the absence of long range magnetic order at high pressures and low temperatures. These measurements suggest changes in the Cu spin fluctuations characteristics above 21 kbar, consistent with the formation of a plaquette phase as previously suggested by inelastic neutron scattering measurements. SCBO is the only known realisation of the Shatry-Sutherland model, thus the ground state mediating the dimer and antiferromagnetic phase is likekly to be a plaquette state.
  •  
11.
  • Horio, M., et al. (författare)
  • Electronic reconstruction forming a C-2-symmetric Dirac semimetal in Ca3Ru2O7
  • 2021
  • Ingår i: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or electronic order. In the stoichiometric ruthenate Ca3Ru2O7, numerous Fermi surface-sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3Ru2O7 a C-2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure-incompatible with translational-symmetry-breaking density waves-serves as an important test for band structure calculations of correlated electron systems.
  •  
12.
  • Horio, M., et al. (författare)
  • Orbital-selective metal skin induced by alkali-metal-dosing Mott-insulating Ca 2 RuO 4
  • 2023
  • Ingår i: Communications Physics. - 2399-3650. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Doped Mott insulators are the starting point for interesting physics such as high temperature superconductivity and quantum spin liquids. For multi-band Mott insulators, orbital selective ground states have been envisioned. However, orbital selective metals and Mott insulators have been difficult to realize experimentally. Here we demonstrate by photoemission spectroscopy how Ca2RuO4, upon alkali-metal surface doping, develops a single-band metal skin. Our dynamical mean field theory calculations reveal that homogeneous electron doping of Ca2RuO4 results in a multi-band metal. All together, our results provide evidence for an orbital-selective Mott insulator breakdown, which is unachievable via simple electron doping. Supported by a cluster model and cluster perturbation theory calculations, we demonstrate a type of skin metal-insulator transition induced by surface dopants that orbital-selectively hybridize with the bulk Mott state and in turn produce coherent in-gap states.
  •  
13.
  • Horio, M., et al. (författare)
  • Oxide Fermi liquid universality revealed by electron spectroscopy
  • 2020
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 102:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr1.3-xLa0.7CexCuO4 (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi liquid cut-off energy scale, we find-in contrast to hole-doped cuprates-a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit-the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.
  •  
14.
  • Jana, Somnath, et al. (författare)
  • Revisiting Goodenough-Kanamori rules in a new series of double perovskites LaSr1-xCaxNiReO6
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic ground states in highly ordered double perovskites LaSr1-xCaxNiReO6 (x = 0.0, 0.5, 1.0) are studied in view of the Goodenough-Kanamori rules of superexchange interactions in this paper. In LaSrNiReO6, Ni and Re sublattices are found to exhibit curious magnetic states separately, but no long range magnetic ordering is achieved. The magnetic transition at similar to 255 K is identified with the independent Re sublattice magnetic ordering. Interestingly, the sublattice interactions are tuned by modifying the Ni-O-Re bond angles through Ca doping. Upon Ca doping, the Ni and Re sublattices start to display a ferrimagnetically ordered state at low temperature. The neutron powder diffraction data reveals long range ferrimagnetic ordering of the Ni and Re magnetic sublattices along the crystallographic b-axis. The transition temperature of the ferrimagnetic phase increases monotonically with increasing Ca concentration.
  •  
15.
  • John Mukkattukavil, D., et al. (författare)
  • Resonant inelastic soft x-ray scattering on LaPt 2 Si 2
  • 2022
  • Ingår i: Journal of physics. Condensed matter : an Institute of Physics journal. - 1361-648X .- 0953-8984. ; 34:32
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.
  •  
16.
  • Kanyolo, Godwill Mbiti, et al. (författare)
  • Honeycomb layered oxides: Structure, energy storage, transport, topology and relevant insights
  • 2021
  • Ingår i: Chemical Society Reviews. - : Royal Society of Chemistry (RSC). - 1460-4744 .- 0306-0012. ; 50:6, s. 3990-4030
  • Forskningsöversikt (refereegranskat)abstract
    • The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials. This journal is
  •  
17.
  • Kobayashi, Shintaro, et al. (författare)
  • Linear Trimer Formation with Antiferromagnetic Ordering in 1 T-CrSe2 Originating from Peierls-like Instabilities and Interlayer Se-Se Interactions
  • 2019
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 58:21, s. 14304-14315
  • Tidskriftsartikel (refereegranskat)abstract
    • Anomalous successive structural transitions in layered 1T-CrSe 2 with an unusual Cr 4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe 2 exhibits dramatic structural changes in in-plane Cr-Cr and interlayer Se-Se distances, which originate from two interactions: (i) in-plane Cr-Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se-Se interactions through p-p hybridization. As a result, 1T-CrSe 2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center-two-electron σ bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe 2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr-Cr and interlayer Se-Se interactions.
  •  
18.
  • Kobayashi, Takahiro, et al. (författare)
  • Revealing the Hidden Spin-Polarized Bands in a Superconducting Tl Bilayer Crystal
  • 2023
  • Ingår i: Nano Letters. - 1530-6992 .- 1530-6984. ; 23:16, s. 7675-7682
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.
  •  
19.
  • Kramer, K. P., et al. (författare)
  • Band structure of overdoped cuprate superconductors: Density functional theory matching experiments
  • 2019
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 99:22
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive angle-resolved photoemission spectroscopy study of the band structure in singlelayer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole-and electron-overdoped cuprate superconductors (La1.59Eu0.2Sr0.21CuO4, La1.77Sr0.23CuO4, Bi1.74Pb0.38Sr1.88CuO6+delta, Tl2Ba2CuO6+delta, and Pr1.15La0.7Ce0.15CuO4) have been studied with special focus on the bands with a predominately d-orbital character. Using a light polarization analysis, the e(g) and t(2g) bands are identified across these materials. A clear correlation between the d(3z2-r2) band energy and the apical oxygen distance d(A) is demonstrated. Moreover, the compound dependence of the d(x2-y2) band bottom and the t(2g) band top is revealed. A direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single-layer cuprates on both the hole-and electron-doped side.
  •  
20.
  • Kramer, K. P., et al. (författare)
  • Revealing the Orbital Composition of Heavy Fermion Quasiparticles in CeRu 2 Si 2
  • 2023
  • Ingår i: Journal of the Physical Society of Japan. - 1347-4073 .- 0031-9015. ; 92:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2
  •  
21.
  • Küspert, Julia, et al. (författare)
  • Pseudogap suppression by competition with superconductivity in La-based cuprates
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2-xSrxCuO4, La1.6-xNd0.4SrxCuO4, and La1.8-xEu0.2SrxCuO4 display slightly different pseudogap critical points in the temperature versus doping phase diagram. We studied the pseudogap evolution into the superconducting state for doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for antinodal spectral weight.
  •  
22.
  • Leitner, Torsten, 1979-, et al. (författare)
  • The CoESCA station at BESSY: Auger electron–photoelectron coincidences from surfaces demonstrated for Ag MNN
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present the CoESCA station for electron–electron coincidence spectroscopy from surfaces, built in a close collaboration between Uppsala University and Helmholtz-Zentrum Berlin at the BESSY II synchrotron facility in Berlin, Germany. We start with a detailed overview of previous work in the field of electron–electron coincidences, before we describe the CoESCA setup and its design parameters. The system is capable of recording shot-to-shot resolved 6D coincidence datasets, i.e. the kinetic energy and the two take off angles for both coincident electrons. The mathematics behind extracting and analysing these multi-dimensional coincidence datasets is introduced, with a focus on coincidence statistics, resulting in fundamental limits of the signal-to-noise ratio and its implications for acquisition times and the size of the raw data stream. The functionality of the CoESCA station is demonstrated for the example of Auger electron–photoelectron coincidences from silver surfaces for photoelectrons from the Ag 3d core levels and their corresponding MNN Auger electrons. The Auger spectra originating from the different core levels, 3d and 3d could be separated and further, the two-hole state energy distributions were determined for these Auger decay channels.
  •  
23.
  • Ma, Le Anh, et al. (författare)
  • Na-ion mobility in P2-type Na0.5MgxNi0.17-xMn0.83O2 (0
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 23:42, s. 24478-24486
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium transition metal oxides with a layered structure are one of the most widely studied cathode materials for Na+-ion batteries. Since the mobility of Na+ in such cathode materials is a key factor that governs the performance of material, electrochemical and muon spin rotation and relaxation techniques are here used to reveal the Na+-ion mobility in a P2-type Na0.5MgxNi0.17-xMn0.83O2 (x = 0, 0.02, 0.05 and 0.07) cathode material. Combining electrochemical techniques such as galvanostatic cycling, cyclic voltammetry, and the galvanostatic intermittent titration technique with mu+SR, we have successfully extracted both self-diffusion and chemical-diffusion under a potential gradient, which are essential to understand the electrode material from an atomic-scale viewpoint. The results indicate that a small amount of Mg substitution has strong effects on the cycling performance and the Na+ mobility. Amongst the tested cathode systems, it was found that the composition with a Mg content of x = 0.02 resulted in the best cycling stability and highest Na+ mobility based on electrochemical and mu+SR results. The current study clearly shows that for developing a new generation of sustainable energy-storage devices, it is crucial to study and understand both the structure as well as dynamics of ions in the material on an atomic level.
  •  
24.
  • Marks, Kess, et al. (författare)
  • Investigation of the surface species during temperature dependent dehydrogenation of naphthalene on Ni(111)
  • 2019
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 150:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H-2 gas, as well as the formation of carbidic and graphitic surface carbon. Published under license by AIP Publishing.
  •  
25.
  • Matsubara, Nami, et al. (författare)
  • Cation Distributions and Magnetic Properties of Ferrispinel MgFeMnO4
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:24, s. 17970-17980
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3¯ m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.
  •  
26.
  • Matsubara, Nami, et al. (författare)
  • Magnetism and ion diffusion in honeycomb layered oxide K 2Ni 2TeO 6
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the quest for developing novel and efficient batteries, a great interest has been raised for sustainable K-based honeycomb layer oxide materials, both for their application in energy devices as well as for their fundamental material properties. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K+) dynamics in materials using e.g. NMR and related techniques has so far been very challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation (μ+SR) technique ideal for probing ions dynamics in these types of energy materials. Here we present a study of the low-temperature magnetic properties as well as K+ dynamics in honeycomb layered oxide material K 2Ni 2TeO 6 using mainly the μ+SR technique. Our low-temperature μ+SR results together with complementary magnetic susceptibility measurements find an antiferromagnetic transition at TN≈ 27 K. Further μ+SR studies performed at higher temperatures reveal that potassium ions (K+) become mobile above 200 K and the activation energy for the diffusion process is obtained as Ea= 121 (13) meV. This is the first time that K+ dynamics in potassium-based battery materials has been measured using μ+SR. Assisted by high-resolution neutron diffraction, the temperature dependence of the K-ion self diffusion constant is also extracted. Finally our results also reveal that K-ion diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for potentially improving ion diffusion as well as K-ion battery device performance using nano-structuring and surface coatings of the particles.
  •  
27.
  • Matsubara, N., et al. (författare)
  • Neutron powder diffraction study of NaMn2O4 and Li0.92Mn2O4: Insights on spin-charge-orbital ordering
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure synthesized quasi-one-dimensional NaMn2O4 and Li0.92Mn2O4 are both antiferromagnetic insulators. Here their atomic and magnetic structures are investigated using neutron powder diffraction. The present crystal structural analyses of NaMn2O4 reveal that a Mn3+/Mn4+ charge-ordering state exists even at low temperature (down to 1.5 K). It is evident that one of the Mn sites shows a strongly distorted Mn3+ octahedron due to the Jahn-Teller effect. Above T-N = 35 K, a two-dimensional short-range correlation is observed, as indicated by asymmetric diffuse scattering. Below T-N, two antiferromagnetic transitions are observed: (i) a commensurate long-range Mn3+ spin ordering below T-N1 = 35 K and (ii) an incommensurate Mn4+ spin ordering below T-N2 = 11 K. Surprisingly, the two antiferromagnetic orders are found to be independent of each other. The commensurate magnetic structure (k(C) = 0.5, 0.5, 0.5) follows the magnetic anisotropy of the local easy axes of Mn3+, while the incommensurate Mn4+ one shows a spin-density-wave or a cycloidal order with k(IC) = (0, 0, 0.216). For Li0.92Mn2O4, on the other hand, the absence of a long-range spin-ordered state is confirmed down to 1.5 K.
  •  
28.
  • Miniotaite, Ugne, et al. (författare)
  • Magnetic Properties of Multifunctional 7 LiFePO 4 under Hydrostatic Pressure
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • LiFePO4 (LFPO) is an archetypical and well-known cathode material for rechargeable Li-ion batteries. However, its quasi-one-dimensional (Q1D) structure along with the Fe ions, LFPO also displays interesting low-temperature magnetic properties. Our team has previously utilized the muon spin rotation (μ +SR) technique to investigate both magnetic spin order as well as Li-ion diffusion in LFPO. In this initial study we extend our investigation and make use of high-pressure μ +SR to investigate effects on the low-T magnetic order. Contrary to theoretical predictions we find that the magnetic ordering temperature as well as the ordered magnetic moment increase at high pressure (compressive strain).
  •  
29.
  • Nocerino, E., et al. (författare)
  • Competition between magnetic interactions and structural instabilities leading to itinerant frustration in the triangular lattice antiferromagnet LiCrSe 2
  • 2023
  • Ingår i: Communications Materials. - 2662-4443. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • LiCrSe2 constitutes a recent valuable addition to the ensemble of two-dimensional triangular lattice antiferromagnets. In this work, we present a comprehensive study of the low temperature nuclear and magnetic structure established in this material. Being subject to a strong magnetoelastic coupling, LiCrSe2 was found to undergo a first order structural transition from a trigonal crystal system (P3 ¯ m1) to a monoclinic one (C2/m) at T s = 30 K. Such restructuring of the lattice is accompanied by a magnetic transition at T N = 30 K. Refinement of the magnetic structure with neutron diffraction data and complementary muon spin rotation analysis reveal the presence of a complex incommensurate magnetic structure with a up-up-down-down arrangement of the chromium moments with ferromagnetic double chains coupled antiferromagnetically. The spin axial vector is also modulated both in direction and modulus, resulting in a spin density wave-like order with periodic suppression of the chromium moment along the chains. This behavior is believed to appear as a result of strong competition between direct exchange antiferromagnetic and superexchange ferromagnetic couplings established between both nearest neighbor and next nearest neighbor Cr3+ ions. We finally conjecture that the resulting magnetic order is stabilized via subtle vacancy/charge order within the lithium layers, potentially causing a mix of two co-existing magnetic phases within the sample.
  •  
30.
  • Nocerino, E., et al. (författare)
  • Magnetic nature of wolframite MgReO 4
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • Rhenium oxides belonging to the family AReO4 where A is a metal cation, exhibit interesting electronic and magnetic properties. In this study we have utilized the muon spin rotation/relaxation (μ +SR) technique to study the magnetic properties of the MgReO4 compound. To the best of our knowledge, this is the first investigation reported on this interesting material, that is stabilized in a wolframite crystal structure using a special high-pressure synthesis technique. Bulk magnetic studies show the onset of an antiferromagnetic (AF) long range order, or a possible singlet spin state at T C1 ≈ 90 K, with a subtle second high-temperature transition at T C2 ≈ 280 K. Both transitions are also confirmed by heat capacity (Cp ) measurements. From our μ +SR measurements, it is clear that the sample enters an AF order below T C1 = T N ≈ 85 K. We find no evidence of magnetic signal above T N, which indicates that T C2 is likely linked to a structural transition. Further, via sensitive zero field (ZF) μ +SR measurements we find evidence of a spin reorientation at T Cant ≈ 65 K. This points towards a transition from a collinear AF into a canted AF order at low temperature, which is proposed to be driven by competing magnetic interactions.
  •  
31.
  • Nocerino, Elisabetta, et al. (författare)
  • Multiple unconventional charge density wave transitions in LaPt2Si2 superconductor clarified with high-energy X-ray diffraction
  • 2023
  • Ingår i: Communications Materials. - : Springer Nature. - 2662-4443. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasi-2D platinum-based rare earth intermetallic LaPt2Si2 has attracted attention as it exhibits strong interplay between charge density wave order and superconductivity. However, most of the results reported on this material come from theoretical calculations, preliminary bulk investigations and powder samples, which makes it difficult to uniquely determine the temperature evolution of its crystal structure and, consequently, of its charge density wave transition. Therefore, the published literature around LaPt2Si2 is often controversial. Here, by means of high-resolution synchrotron X-ray diffraction data, we clarify some of the poorly or partially understood aspects of the physics of LaPt2Si2. In particular, we resolve the complex evolution of its crystal structure and superstructures, identifying the temperature dependence of multiple density wave transitions in good quality LaPt2Si2 single crystals. According to our findings, on cooling from room temperature LaPt2Si2 undergoes a series of subtle structural transitions which can be summarised as follows: second order commensurate tetragonal (P4/n m m)-to-incommensurate structure followed by a first order incommensurate-to-commensurate orthorhombic (P m m n) transition and then a first order commensurate orthorhombic (P m m n)-to-commensurate tetragonal (P4/n m m). The structural transitions are accompanied by both incommensurate and commensurate superstructural distortions of the lattice. The observed behavior is compatible with discommensuration of the CDW in this material.
  •  
32.
  • Nocerino, Elisabetta, et al. (författare)
  • Nuclear and magnetic spin structure of the antiferromagnetic triangular lattice compound LiCrTe 2 investigated by μ + SR, neutron and X-ray diffraction
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) triangular lattice antiferromagnets (2D-TLA) often manifest intriguing physical and technological properties, due to the strong interplay between lattice geometry and electronic properties. The recently synthesized 2-dimensional transition metal dichalcogenide LiCrTe2, being a 2D-TLA, enriched the range of materials which can present such properties. In this work, muon spin rotation (μ+SR) and neutron powder diffraction (NPD) have been utilized to reveal the true magnetic nature and ground state of LiCrTe2. From high-resolution NPD the magnetic spin order at base-temperature is not, as previously suggested, helical, but rather collinear antiferromagnetic (AFM) with ferromagnetic (FM) spin coupling within the ab-plane and AFM coupling along the c-axis. The value if the ordered magnetic Cr moment is established as μCr=2.36μB. From detailed μ+SR measurements we observe an AFM ordering temperature TN≈ 125 K. This value is remarkably higher than the one previously reported by magnetic bulk measurements. From μ+SR we are able to extract the magnetic order parameter, whose critical exponent allows us to categorize LiCrTe2 in the 3D Heisenberg AFM universality class. Finally, by combining our magnetic studies with high-resolution synchrotron X-ray diffraction (XRD), we find a clear coupling between the nuclear and magnetic spin lattices. This suggests the possibility for a strong magnon–phonon coupling, similar to what has been previously observed in the closely related compound LiCrO2.
  •  
33.
  • Nocerino, E., et al. (författare)
  • Q-dependent electron-phonon coupling induced phonon softening and non-conventional critical behavior in the CDW superconductor LaPt 2 Si 2
  • 2023
  • Ingår i: Journal of Science: Advanced Materials and Devices. - 2468-2284 .- 2468-2179. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the first experimental observation of phonons and their softening on single crystalline LaPt2Si2 via inelastic neutron scattering. From the temperature dependence of the phonon frequency in close proximity to the charge density wave (CDW) q-vector, we obtain a CDW transition temperature of TCDW = 230 K and a critical exponent β = 0.28 ± 0.03. This value is suggestive of a non-conventional critical behavior for the CDW phase transition in LaPt2Si2, compatible with a scenario of CDW discommensuration (DC). The DC would be caused by the existence of two CDWs in this material, propagating separately in the non equivalent (Si1–Pt2–Si1) and (Pt1–Si2–Pt1) layers, respectively, with transition temperatures TCDW−1 = 230 K and TCDW−2 = 110 K. A strong q-dependence of the electron-phonon coupling has been identified as the driving mechanism for the CDW transition at TCDW−1 = 230 K while a CDW with 3-dimensional character, and Fermi surface quasi-nesting as a driving mechanism, is suggested for the transition at TCDW−2 = 110 K. Our results clarify some aspects of the CDW transition in LaPt2Si2 which have been so far misinterpreted by both theoretical predictions and experimental observations and give direct insight into its actual temperature dependence.
  •  
34.
  • Nocerino, E., et al. (författare)
  • Unusually large magnetic moment and tricritical behavior of the CMR compound NaCr 2 O 4 revealed with high resolution neutron diffraction and μ + SR
  • 2023
  • Ingår i: JPhys Materials. - 2515-7639. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The mixed valence Cr3+/Cr4+ compound NaCr2O4, hosts a plethora of unconventional electronic properties. In the present study, muon spin rotation/relaxation ( μ + SR) and high-resolution time-of-flight neutron powder diffraction measurements were carried out on high-quality samples to clarify the complex magnetic ground state of this unique material. We identified a commensurate canted antiferromagnetic order (C-AFM) with a canting angle of the Cr spin axial vector equal to θ c = ( 8.8 ± 0.5 ) ∘ , and an estimated Cr moment μ C r C ∼ ( 4.30 ± 0.01 ) μ B . Such an unusually large value of μ C r C is compatible with the existence of high-spin Cr sites created by the presence of an unconventional negative charge transfer state in NaCr2O4. In addition to the C-AFM structure, a novel magnetic supercell was also revealed. Such supercell display an incommensurate (IC)-AFM propagation vector (0 0 1 2 − δ ), having a Cr moment μ C r I C = ( 2.20 ± 0.03 ) μ B . It is suggested that the C-AFM and IC-AFM modulations have two different electronic origins, being due to itinerant and localized contributions to the magnetic moment respectively. Finally, the direct measurement of the magnetic order parameter for the C-AFM structure provided a value of the critical exponent β = 0.245 ≈ 1 4 , suggesting a non conventional critical behavior for the magnetic phase transition in NaCr2O4
  •  
35.
  • Ohishi, Kazuki, et al. (författare)
  • The internal magnetic field in a ferromagnetic compound Y 2 Co 12 P 7
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • The internal magnetic field in a ferromagnetic compound, Y2Co12P7 with T C = 150 K, was studied with μ +SR using a powder sample down to 2 K. The wTF-μ +SR measurements revealed the presence of a sharp magnetic transition at T C = 151 K, and the ZF-μ +SR measurements clarified the formation of static magnetic order below T C. The presence of two muon spin precession signals in the ZF-μ +SR spectrum below T C indicates the existence of the two different muon sites in the lattice. By considering the muon sites and local spin densities at the muon sites predicted with DFT calculations, the ordered magnetic moments of Co were successfully determined.
  •  
36.
  • Papadopoulos, Konstantinos, 1989, et al. (författare)
  • Influence of the magnetic sublattices in the double perovskite LaCaNiReO6
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 106:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetism of double perovskites is a complex phenomenon, determined from intra- or interatomic magnetic moment interactions, and strongly influenced by geometry. We take advantage of the complementary length and timescales of the muon spin rotation, relaxation, and resonance (μ+SR) microscopic technique and bulk ac/dc magnetic susceptibility measurements to study the magnetic phases of the LaCaNiReO6 double perovskite. As a result, we are able to discern and report ferrimagnetic ordering below TC=102K and the formation of different magnetic domains above TC. Between TC270K. An evolution of the interaction between Ni and Re magnetic sublattices, in this geometrically frustrated fcc perovskite structure, is revealed as a function of temperature through the critical behavior and thermal evolution of microscopic and macroscopic physical quantities.
  •  
37.
  • Sassa, Yasmine, 1981, et al. (författare)
  • Kagome-like silicene: A novel exotic form of two-dimensional epitaxial silicon
  • 2020
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 530
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the discovery of graphene, intensive efforts have been made in search of novel two-dimensional (2D) materials. Decreasing the materials dimensionality to their ultimate thinness is a promising route to unveil new physical phenomena, and potentially improve the performance of devices. Among recent 2D materials, analogs of graphene, the group IV elements have attracted much attention for their unexpected and tunable physical properties. Depending on the growth conditions and substrates, several structures of silicene, germanene, and stanene can be formed. Here, we report the synthesis of a Kagome-like lattice of silicene on aluminum (1 1 1) substrates. We provide evidence of such an exotic 2D Si allotrope through scanning tunneling microscopy (STM) observations, high-resolution core-level (CL) and angle-resolved photoelectron spectroscopy (ARPES) measurements, along with Density Functional Theory calculations.
  •  
38.
  • Simutis, Gediminas, et al. (författare)
  • In situ uniaxial pressure cell for x-ray and neutron scattering experiments
  • 2023
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 94:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes.
  •  
39.
  • Simutis, Gediminas, et al. (författare)
  • Single-domain stripe order in a high-temperature superconductor
  • 2022
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling of spin, charge and lattice degrees of freedom results in the emergence of novel states of matter across many classes of strongly correlated electron materials. A model example is unconventional superconductivity, which is widely believed to arise from the coupling of electrons via spin excitations. In cuprate high-temperature superconductors, the interplay of charge and spin degrees of freedom is also reflected in a zoo of charge and spin-density wave orders that are intertwined with superconductivity. A key question is whether the different types of density waves merely coexist or are indeed directly coupled. Here we profit from a neutron scattering technique with superior beam-focusing that allows us to probe the subtle spin-density wave order in the prototypical high-temperature superconductor La1.88Sr0.12CuO4 under applied uniaxial pressure to demonstrate that the two density waves respond to the external tuning parameter in the same manner. Our result shows that suitable models for high-temperature superconductivity must equally account for charge and spin degrees of freedom via uniaxial charge-spin stripe fluctuations.
  •  
40.
  • Song, Jiao-Jiao, et al. (författare)
  • The 4f-Hybridization Strength in CemMnIn3m+2n Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
  • 2021
  • Ingår i: Chinese Physics Letters. - : IOP Publishing. - 0256-307X .- 1741-3540. ; 38:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CemMnIn3m+2n (with M = Co, Rh, Jr, and Pt, m = 1, 2, n = 0-2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands f(0), f(7/2)(1) and f(5/2)(1), are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong f(0) states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the f(5/2)(1)-f (0) intensity ratio is more suitable to reflect the 4f-state hybridization strength.
  •  
41.
  • Sugiyama, Jun, et al. (författare)
  • Lithium diffusion in LiMnPO4 detected with mu +/- SR
  • 2020
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Positive- and negative-muon spin rotation and relaxation (mu(+/-) SR) was first used to investigate fluctuations of nuclear magnetic fields in an olivine-type battery material, LiMnPO4, in order to clarify the diffusive species, namely, to distinguish between a mu(+) hopping among interstitial sites and Li+ ions diffusing in the LiMnPO4 lattice. Muon diffusion can only occur in mu+SR, because the implanted mu(-) forms a stable muonic atom at the lattice site, and therefore any change in linewidth measured with mu-SR must be due to Li+ diffusion. Since the two measurements exhibit a similar increase in the field fluctuation rate with temperature above 100 K, it is confirmed that Li+ ions are in fact diffusing. The diffusion coefficient of Li+ at 300 K and its activation energy were estimated to be 1.4(3) x 10(-10) cm(2)/s and 0.19(3) eV, respectively. Such combined mu(SR)-S-+/- measurements are thus shown to be a suitable tool for detecting ion diffusion in solid-state energy materials.
  •  
42.
  • Sugiyama, Jun, et al. (författare)
  • Magnetic phase boundary of BaVS3 clarified with high-pressure mu+SR
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 101:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic nature of the quasi-one-dimensional BaVS3 has been studied as a function of temperature down to 0.25 K and pressure up to 1.97 GPa on a powder sample using the positive muon spin rotation and relaxation (mu(+) SR) technique. At ambient pressure, BaVS3 enters an incommensurate antiferromagnetic ordered state below the Neel temperature (T-N)31 K. T-N is almost constant as the pressure (p) increases from ambient pressure to 1.4 GPa, then T-N decreases rapidly for p > 1.4 GPa, and finally disappears at p similar to 1.8 GPa, above which a metallic phase is stabilized. Hence, T-N is found to be equivalent to the pressure-induced metal-insulator transition temperature (T-MI) at p > 1.4 GPa.
  •  
43.
  • Sugiyama, Jun, et al. (författare)
  • Negative muon spin rotation and relaxation on superconducting MgB 2
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • The internal nuclear magnetic field in a superconducting MgB2 powder sample was studied with a μ- SR technique. Although the past μ +SR study on MgB2 reported the appearance of a dynamic behavior even below Tc due to μ + diffusion, μ- SR shows a static behavior in the whole temperature range measured, as expected. The ZF-μ- SR spectra do not suggest any appearance of additional magnetic field below Tc within the experimental accuracy. Considering the small asymmetry of the μ- SR signal, it is a challenge to detect the appearance of an internal magnetic field below Tc caused by the time reversal symmetry breaking.
  •  
44.
  • Sugiyama, Jun, et al. (författare)
  • Pressure dependence of ferromagnetic phase boundary in BaVSe3 studied with high-pressure μ+SR
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 103:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic nature of a quasi-one-dimensional compound, BaVSe3, has been investigated with positive muon spin rotation and relaxation (μ+SR) measurements at ambient and high pressures. At ambient pressure, the μ+SR spectrum recorded under zero external magnetic field exhibited a clear oscillation below the Curie temperature (TC∼41K) due to the formation of quasistatic ferromagnetic order. The oscillation consisted of two different muon spin precession signals, indicating the presence of two magnetically different muon sites in the lattice. However, the two precession frequencies, which correspond to the internal magnetic fields at the two muon sites, could not be adequately explained with relatively simple ferromagnetic structures using the muon sites predicted by density functional theory calculations. The detailed analysis of the internal magnetic field suggested that the V moments align ferromagnetically along the c axis but slightly canted toward the a axis by 28 that is coupled antiferromagnetically. The ordered V moment (MV) is estimated as (0.59, 0, 1.11) μB. As pressure increased from ambient pressure, TC was found to decrease slightly up to about 1.5 GPa, at which point TC started to increase rapidly with the further increase of the pressure. Based on a strong ferromagnetic interaction along the c axis, the high-pressure μ+SR result revealed that there are two magnetic interactions in the ab plane; one is an antiferromagnetic interaction that is enhanced with pressure, mainly at pressures below 1.5 GPa, while the other is a ferromagnetic interaction that becomes predominant at pressures above 1.5 GPa.
  •  
45.
  • Sugiyama, Jun, et al. (författare)
  • Search for a space charge layer in thin film battery materials with low-energy muons
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • In an all solid state Li-ion battery, it is crucial to reduce ionic resistivity at the interface between the electrode and the electrolyte in order to enhance Li+ mobility across the interface. Recent first principles calculations predict the presence of a space-charge layer (SCL) at the interface due to the difference in the Li+ chemical potential at the interface between two different materials, as in the metal-semiconductor junction in electronic devices. However, the presence of SCL has never been experimentally observed. Our first attempt in a fresh multilayer sample, Cu(10 nm)/Li3PO4(50 nm)/LiCoO2(100 nm) on a sapphire substrate, with low-energy μ +SR (LE μ +SR) revealed a gradual change in the nuclear magnetic field distribution width as a function of implantation depth even across the interface between Li3PO4 and LiCoO2. This implies that the change in the field distribution width at SCL of the sample is too small to be detected by LE μ +SR.
  •  
46.
  • Tissot, H., et al. (författare)
  • Acetic acid conversion to ketene on Cu 2 O(1 0 0): Reaction mechanism deduced from experimental observations and theoretical computations
  • 2021
  • Ingår i: Journal of Catalysis. - : Elsevier BV. - 0021-9517 .- 1090-2694. ; 402, s. 154-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Ketene, a versatile reagent in production of fine and specialty chemicals, is produced from acetic acid. We investigate the synthesis of ketene from acetic acid over the (3,0;1,1) surface of Cu2O(1 0 0) through analysis of the adsorption and desorption characteristics of formic and acetic acids. The results allow us to establish a reaction mechanism for ketene formation. Observations from x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy, and temperature programmed desorption (TPD), supported by a comparison with formic acid results, suggest that acetic acid reacts with Cu2O through deprotonation to form acetate species coordinated to copper sites and hydroxylation of nearby surface oxygen sites. For formic acid the decomposition of adsorbed formate species results in desorption of CO2 and CO while, for acetic acid, high yields of ketene are observed at temperature >500 K. Modeling by density functional theory (DFT) confirms the strong interaction of acetic acid with the (3,0;1,1) surface and the spontaneous dissociation into adsorbed acetate and hydrogen atom species, the latter forming an OH-group. In an identified reaction intermediate ketene binds via all C and O atoms to Cu surface sites, in agreement with interpretations from XPS. In the vicinity of the adsorbate the surface experiences a local reorganization into a c(2 × 2) reconstruction. The total computed energy barrier for ketene formation is 1.81 eV in good agreement with the 1.74 eV obtained from TPD analysis. Our experimental observations and mechanistic DFT studies suggests that Cu2O can operate as an efficient catalyst for the green generation of ketene from acetic acid.
  •  
47.
  • Ţuţueanu, A. E., et al. (författare)
  • Gradual emergence of superconductivity in underdoped La2-x Srx CuO4
  • 2023
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 107:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We present triple-axis neutron scattering studies of low-energy magnetic fluctuations in strongly underdoped La2-xSrxCuO4 with x=0.05, 0.06 and 0.07, providing quantitative evidence for a direct competition between these fluctuations and superconductivity. At dopings x=0.06 and x=0.07, three-dimensional superconductivity is found, while only a very weak signature of two-dimensional superconductivity residing in the CuO2 planes is detectable for x=0.05. We find a surprising suppression of the low-energy fluctuations by an external magnetic field at all three dopings. This implies that the response of two-dimensional superconductivity to a magnetic field is similar to that of a bulk superconductor. Our results provide direct evidence of a very gradual onset of superconductivity in cuprates.
  •  
48.
  • Ţuţueanu, A. E., et al. (författare)
  • Non-destructive characterisation of dopant spatial distribution in cuprate superconductors
  • 2020
  • Ingår i: Physica C: Superconductivity and its Applications. - : Elsevier BV. - 0921-4534 .- 1873-2143. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • Proper characterisation of investigated samples is vital when studying superconductivity as impurities and doping inhomogeneities can affect the physical properties of the measured system. We present a method where a polarised neutron imaging setup utilises the precession of spin-polarised neutrons in the presence of a trapped field in the superconducting sample to spatially map out the critical temperature for the phase transition between superconducting and non-superconducting states. We demonstrate this method on a superconducting crystal of the prototypical high-temperature superconductor (La,Sr)2CuO4. The results, which are backed up by complementary magnetic susceptibility measurements, show that the method is able to resolve minor variations in the transition temperature across the length of the LSCO crystal, caused by inhomogeneities in strontium doping.
  •  
49.
  • Urushihara, Daisuke, et al. (författare)
  • Structural Transition with a Sharp Change in the Electrical Resistivity and Spin-Orbit Mott Insulating State in a Rhenium Oxide, Sr 3 Re 2 O 9
  • 2021
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 60:2, s. 507-514
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the successful synthesis, crystal structure, and electrical properties of Sr3Re2O9, which contains Re6+ with the 5d1 configuration. This compound is isostructural with Ba3Re2O9 and shows a first-order structural phase transition at ∼370 K. The low-temperature (LT) phase crystallizes in a hettotype structure of Ba3Re2O9, which is different from that of the LT phase of Sr3W2O9, suggesting that the electronic state of Re6+ plays an important role in determining the crystal structure of the LT phase. The structural transition is accompanied by a sharp change in the electrical resistivity. This is likely a metal-insulator transition, as suggested by the electronic band calculation and magnetic susceptibility. In the LT phase, the ReO6 octahedra are rotated in a pseudo-a0a0a+ manner in Glazer notation, which corresponds to C-type orbital ordering. Paramagnetic dipole moments were confirmed to exist in the LT phase by muon spin rotation and relaxation measurements. However, the dipole moments shrink greatly because of the strong spin-orbit coupling in the Re ions. Thus, the electronic state of the LT phase corresponds to a Mott insulating state with strong spin-orbit interactions at the Re sites.
  •  
50.
  • von Arx, Karin, 1993, et al. (författare)
  • Fate of charge order in overdoped La-based cuprates
  • 2023
  • Ingår i: NPJ QUANTUM MATERIALS. - : Springer Nature. - 2397-4648. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2-xSrxCuO4 and La1.8-xEu0.2SrxCuO4. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron-phonon coupling that broadly peaks at the stripe ordering vector. In La2-xSrxCuO4, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 55

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy