SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schön Max E.) "

Sökning: WFRF:(Schön Max E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Martijn, Joran, et al. (författare)
  • Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon
  • 2019
  • Ingår i: Environmental Microbiology. - : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 21:7, s. 2485-2498
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The method operated at moderately high-throughput (22286-37,850 raw ccs reads) and generated a large amount of putative novel archaeal 23S rRNA gene sequences compared to the archaeal SILVA database. These long amplicons allowed for higher resolution during taxonomic classification by means of long (similar to 1000 bp) 16S rRNA gene fragments and for substantially more confident phylogenies by means of combined near full-length 16S and 23S rRNA gene sequences, compared to shorter traditional amplicons (250 bp of the 16S rRNA gene). We recommend our method to those who wish to cost-effectively and confidently estimate the phylogenetic diversity of prokaryotes in environmental samples at high throughput.
  •  
4.
  • Eme, Laura, et al. (författare)
  • Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 992-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes(1). However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved(2-4). Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.
  •  
5.
  • Martijn, Joran, et al. (författare)
  • Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition
  • 2020
  • Ingår i: Nature Communications. - : NATURE RESEARCH. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Halobacteria (henceforth: Haloarchaea) are predominantly aerobic halophiles that are thought to have evolved from anaerobic methanogens. This remarkable transformation most likely involved an extensive influx of bacterial genes. Whether it entailed a single massive transfer event or a gradual stream of transfers remains a matter of debate. To address this, genomes that descend from methanogen-to-halophile intermediates are necessary. Here, we present five such near-complete genomes of Marine Group IV archaea (Hikarchaeia), the closest known relatives of Haloarchaea. Their inclusion in gene tree-aware ancestral reconstructions reveals an intermediate stage that had already lost a large number of genes, including nearly all of those involved in methanogenesis and the Wood-Ljungdahl pathway. In contrast, the last Haloarchaea common ancestor gained a large number of genes and expanded its aerobic respiration and salt/UV resistance gene repertoire. Our results suggest that complex and gradual patterns of gain and loss shaped the methanogen-to-halophile transition. A study of the first genomes of the marine Hikarchaeia, the closest known relatives of Haloarchaea, is presented. Their inclusion in ancestral reconstructions unveils an intermediate stage in the evolutionary transition from ancestral anaerobic methanogens to modern day aerobic halophiles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy