SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaller Matthieu) "

Sökning: WFRF:(Schaller Matthieu)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McAlpine, Stuart, et al. (författare)
  • SIBELIUS-DARK : a galaxy catalogue of the local volume from a constrained realization simulation
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:4, s. 5823-5847
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SIBELIUS-DARK, a constrained realization simulation of the local volume to a distance of 200 Mpc from the Milky Way. SIBELIUS-DARK is the first study of the ‘Simulations Beyond The Local Universe’ (SIBELIUS) project, which has the goal of embedding a model Local Group-like system within the correct cosmic environment. The simulation is dark-matter-only, with the galaxy population calculated using the semi-analytic model of galaxy formation, GALFORM. We demonstrate that the large-scale structure that emerges from the SIBELIUS constrained initial conditions matches well the observational data. The inferred galaxy population of SIBELIUS-DARK also match well the observational data, both statistically for the whole volume and on an object-by-object basis for the most massive clusters. For example, the K-band number counts across the whole sky, and when divided between the northern and southern Galactic hemispheres, are well reproduced by SIBELIUS-DARK. We find that the local volume is somewhat unusual in the wider context of ΛCDM: it contains an abnormally high number of supermassive clusters, as well as an overall large-scale underdensity at the level of ≈5 per cent relative to the cosmic mean. However, whilst rare, the extent of these peculiarities does not significantly challenge the ΛCDM model. SIBELIUS-DARK is the most comprehensive constrained realization simulation of the local volume to date, and with this paper we publicly release the halo and galaxy catalogues at z = 0, which we hope will be useful to the wider astronomy community.
  •  
2.
  • Puglisi, A., et al. (författare)
  • KURVS: the outer rotation curve shapes and dark matter fractions of z ∼1.5 star-forming galaxies
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 524:2, s. 2814-2835
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results from the KMOS Ultra-deep Rotation Velocity Survey (KURVS), aimed at studying the outer rotation curves shape and dark matter content of 22 star-forming galaxies at z ∼1.5. These galaxies represent 'typical' star-forming discs at z ∼1.5, being located within the star-forming main sequence and stellar mass-size relation with stellar masses 9.5 ≤ log(M*/M⊙) ≤ 11.5. We use the spatially resolved H α emission to extract individual rotation curves out to 4 times the effective radius, on average, or ∼10-15 kpc. Most rotation curves are flat or rising between three and six disc scale radii. Only three objects with dispersion-dominated dynamics (vrot/σ0 ∼0.2) have declining outer rotation curves at more than 5σ significance. After accounting for seeing and pressure support, the nine rotation-dominated discs with vrot/σ0 ≥ 1.5 have average dark matter fractions of at the effective radius, similar to local discs. Together with previous observations of star-forming galaxies at cosmic noon, our measurements suggest a trend of declining dark matter fraction with increasing stellar mass and stellar mass surface density at the effective radius. Measurements of simulated EAGLE galaxies are in quantitative agreement with observations up to log, and overpredict the dark matter fraction of galaxies with higher mass surface densities by a factor of ∼3. We conclude that the dynamics of typical rotationally-supported discs at z ∼1.5 is dominated by dark matter from effective radius scales, in broad agreement with cosmological models. The tension with observations at high stellar mass surface density suggests that the prescriptions for baryonic processes occurring in the most massive galaxies (such as bulge growth and quenching) need to be reassessed.
  •  
3.
  • Sawala, Till, et al. (författare)
  • The Milky Way’s plane of satellites is consistent with ΛCDM
  • 2023
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 7:4, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • The Milky Way is surrounded by 11 ‘classical’ satellite galaxies in a remarkable configuration: a thin plane that is possibly rotationally supported. Such a structure is thought to be highly unlikely to arise in the standard (ΛCDM) cosmological model (Λ cold dark matter model, where Λ is the cosmological constant). While other apparent discrepancies between predictions and observations of Milky Way satellite galaxies may be explained either through baryonic effects or by invoking alternative forms of dark matter particles, there is no known mechanism for making rotating satellite planes within the dispersion-supported dark matter haloes predicted to surround galaxies such as the Milky Way. This is the so-called ‘plane of satellites problem’, which challenges not only the ΛCDM model but the entire concept of dark matter. Here we show that the reportedly exceptional anisotropy of the Milky Way satellites is explained, in large part, by their lopsided radial distribution combined with the temporary conjunction of the two most distant satellites, Leo I and Leo II. Using Gaia proper motions, we show that the orbital pole alignment is much more common than previously reported, and reveal the plane of satellites to be transient rather than rotationally supported. Comparing with new simulations, where such short-lived planes are common, we find the Milky Way satellites to be compatible with standard model expectations.
  •  
4.
  • Schaller, Matthieu, et al. (författare)
  • Swift : a modern highly parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 530:2, s. 2378-2419
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarize the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.
  •  
5.
  • Zhang, Si Min, et al. (författare)
  • Development of a chemical probe against NUDT15
  • 2020
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 16:10, s. 1120-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy