SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schee J.) "

Sökning: WFRF:(Schee J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Horvath, I., et al. (författare)
  • A European Respiratory Society technical standard: exhaled biomarkers in lung disease
  • 2017
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 49:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management. Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members. Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised. Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
  •  
4.
  •  
5.
  • Lančová, D., et al. (författare)
  • Puffy Accretion Disks: Sub-Eddington, Optically Thick, and Stable
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 884:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a new class of solutions of black hole accretion disks that we have found through three-dimensional, global, radiative magnetohydrodynamic simulations in general relativity. It combines features of the canonical thin, slim, and thick disk models but differs in crucial respects from each of them. We expect these new solutions to provide a more realistic description of black hole disks than the slim disk model. We are presenting a disk solution for a nonspinning black hole at a sub-Eddington mass accretion rate,. By the density scale-height measure the disk appears to be thin, having a high density core near the equatorial plane of height, but most of the inflow occurs through a highly advective, turbulent, optically thick, Keplerian region that sandwiches the core and has a substantial geometrical thickness comparable to the radius, H ∼ r. The accreting fluid is supported above the midplane in large part by the magnetic field, with the gas and radiation to magnetic pressure ratio β ∼ 1, this makes the disk thermally stable, even though the radiation pressure strongly dominates over gas pressure. A significant part of the radiation emerging from the disk is captured by the black hole, so the disk is less luminous than a thin disk would be at the same accretion rate. © 2019. The American Astronomical Society. All rights reserved..
  •  
6.
  • Vieira, R. S. S., et al. (författare)
  • Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Horava's gravity
  • 2014
  • Ingår i: Physical Review D. - 1550-7998. ; 90:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss photon and test-particle orbits in the Kehagias-Sfetsos (KS) metric of Horava's gravity. For any value of the Horava parameter., there are values of the gravitational mass M for which the metric describes a naked singularity, and this is always accompanied by a vacuum "antigravity sphere" on whose surface a test particle can remain at rest (in a zero angular momentum geodesic), and inside which no circular geodesics exist. The observational appearance of an accreting KS naked singularity in a binary system would be that of a quasistatic spherical fluid shell surrounded by an accretion disk, whose properties depend on the value of M, but are always very different from accretion disks familiar from the Kerr-metric solutions. The properties of the corresponding circular orbits are qualitatively similar to those of the Reissner-Nordstrom naked singularities. When event horizons are present, the orbits outside the Kehagias-Sfetsos black hole are qualitatively similar to those of the Schwarzschild metric.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy