SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schellart P.) "

Sökning: WFRF:(Schellart P.)

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
2.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
3.
  • Buitink, S., et al. (författare)
  • A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 531:7592, s. 70-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017–1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal1 comes from accelerators capable of producing cosmic rays of these energies2. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum3 (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground4. Current measurements5 have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6, 7, 8 is a rapidly developing technique9 for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front6, 12. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017–1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017–1017.5 electronvolt range.
  •  
4.
  • Schellart, P., et al. (författare)
  • Detecting cosmic rays with the LOFAR radio telescope
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 560, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first ~2 years of observing, 405 cosmic-ray events in the energy range of 1016−1018 eV have been detected in the band from 30−80 MHz. Each of these air showers is registered with up to ~1000 independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.
  •  
5.
  • Corstanje, A., et al. (författare)
  • The shape of the radio wavefront of extensive air showers as measured with LOFAR
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 61, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.
  •  
6.
  • Nelles, A., et al. (författare)
  • Calibrating the absolute amplitude scale for air showers measured at LOFAR
  • 2015
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.
  •  
7.
  • Schellart, P., et al. (författare)
  • Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:16, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.
  •  
8.
  • Nelles, A., et al. (författare)
  • Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 65, s. 11-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.
  •  
9.
  • Scholten, O., et al. (författare)
  • Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms
  • 2016
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 94:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.
  •  
10.
  • Bonardi, A., et al. (författare)
  • Study of the LOFAR radio self-trigger and single-station acquisition mode
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) observatory is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10-240 MHz. Radio antennas are clustered into over 50 stations, and are spread along Central and Northern Europe. The LOFAR core, where the density of stations is highest, is instrumented with the LOfar Radboud air shower Array (LORA), covering an area of about 300 m diameter centered at the LOFAR core position. Since 2011 the LOFAR core has been used for detecting radio-signals associated to cosmic-ray air showers in the energy range 1016 - 1018 eV. Data acquisition is triggered by the LORA scintillator array, which provides energy, arrival direction, and core position estimates of the detected air shower too. Thus only the core of the LOFAR array is currently used for cosmic-ray detection. In order to extend the energy range of the detected cosmic rays, it is necessary to expand the effective collecting area to the whole LOFAR array. On this purpose, a detailed study about the LOFAR potentialities of working in self-trigger mode, i.e. with the cosmic-ray data acquisition trigger provided by the radio-antenna only, is presented here. A new method based on the intensity and the frequency spectrum for determining the air shower position to be implemented on LOFAR remote stations is presented too. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
11.
  • Buitink, S., et al. (författare)
  • Cosmic ray mass composition with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference — ICRC2017. 10–20 July, 2017. Bexco, Busan, Korea. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR radio telescope measures the radio emission from extensive air showers with unprecedented precision. In the dense core individual air showers are detected by hundreds of dipole antennas. By fitting the complex radiation pattern to Monte Carlo radio simulation codes we obtain measurements of the atmospheric depth of the shower maximum X max with a precision of < 20 g/cm 2 . This quantity is sensitive to the mass composition of cosmic rays. We discuss the first mass composition results of LOFAR and the improvements that are currently being made to enhance the accuracy of future analysis. Firstly, a more realistic treatment of the atmosphere will decrease the systematic uncertainties due to the atmosphere. Secondly, a series of upgrades to the LOFAR system will lead to increased effective area, duty cycle, and the possibility to extend the composition analysis down to the energy of 10 16.5 eV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
12.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers using Global Data Assimilation System (GDAS)
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017, Bexco, Busan, Korea. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • One of the major systematic uncertainties in the measurement of Xmax from radio emission of EAS arises from variations of the refractive index in the atmosphere. The refractive index n varies with temperature, humidity and pressure, and the variations can be on the order of 10% for (n-1) at a given altitude. The effect of a varying refractive index on Xmax measurements is evaluated using CoREAS: a microscopic simulation of the radio emission from the individual particles in the cascade simulated with CORSIKA. We discuss the resulting offsets in Xmax for different frequency regimes, and compare them to a simple physical model. Under typical circumstances, the offsets in Xmax range from 4-11 g/cm2 for the 30-80 MHz frequency band. Therefore, for precise measurements it is required to include atmospheric data at the time and place of observation of the air shower into the simulations. The aim is to implement this in the next version of CoREAS/CORSIKA using the Global Data Assimilation System (GDAS), a global atmospheric model based on meteorological measurements and numerical weather predictions. This can then be used to re-evaluate the air shower measurements of the LOFAR radio telescope. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
13.
  • Hare, B. M., et al. (författare)
  • LOFAR Lightning Imaging : Mapping Lightning With Nanosecond Precision
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 123:5, s. 2861-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20km outside the area enclosed by LOFAR antennas (approximate to 3,200km(2)), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
  •  
14.
  • Horandel, Jorg R., et al. (författare)
  • The mass composition of cosmic rays measured with LOFAR
  • 2017
  • Ingår i: RICAP16, 6TH ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 10(17) to 10(18) eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
  •  
15.
  • Mulrey, K., et al. (författare)
  • Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement. (C) 2019 Elsevier B.V. All rights reserved.
  •  
16.
  • Mulrey, K., et al. (författare)
  • Expansion of the LOFAR radboud air shower array
  • 2018
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR Radboud Air Shower Array (LORA) consists of 20 plastic scintillators and is situated at the core of the LOFAR radio telescope. LORA detects particles from extensive air showers and triggers the read-out of the LOFAR antennas. The dense LOFAR antenna spacing allows for detailed sampling of the radio emission generated in extensive air showers, which yields high precision reconstruction of cosmic ray properties and information about the shower development. We discuss the proposed expansion of LORA, including the addition of scintillator units and the implementation of triggering algorithms that will probe more details of the radio emission and detect lower energy showers without introducing a composition bias, which is important for studying the origin of cosmic rays.
  •  
17.
  • Mulrey, K., et al. (författare)
  • Updated Calibration of the LOFAR Low-Band Antennas
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The LOw-Frequency ARray (LOFAR) telescope measures radio emission from air showers. In order to interpret the data, an absolute, frequency dependent calibration is required. Due to a growing need for a better understanding of the measured frequency spectrum, we revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the galactic radio emission and a detailed model of the LOFAR signal chain, we find a calibration that provides an absolute energy scale and allows us to study frequency dependent features in measured air shower signals.
  •  
18.
  • Rossetto, L., et al. (författare)
  • Characterisation of the radio frequency spectrum emitted by high energy air showers with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC2017. - Trieste : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by extensive air showers in the energy range 1016 - 1018 e V, and to characterise the geometry of the observed cascade in a detailed way. The radio signal emitted by extensive air showers along their propagation in the atmosphere has been studied in the 30 - 70 MHz frequency range. The study has been conducted on real data and simulated showers. Regarding real data, cosmic ray radio signals detected by LOFAR since 2011 have been analysed. For simulated showers, the CoREAS code, a plug-in of the CORSIKA particle simulation code, has been used. The results show a clear dependence of the frequency spectrum on the distance to the shower axis for both real data and simulations. In particular, the spectrum flatten at a distance around 100 m from the shower axis, where the coherence of the radio signal is maximum. This behaviour could also be used to reconstruct the position of the shower axis at ground. A correlation between the frequency spectrum and the geometrical distance to the depth of the shower maximum Xmax has also been investigated. The final aim of this study is to find a method to improve the inferred information of primary cosmic rays with radio antennas, in view of affirming the radio detection technique as reliable method for the study of extensive air showers. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
19.
  • Scholten, O., et al. (författare)
  • Circular polarization in radio emission from extensive air showers
  • 2017
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017; Bexco, Busan; South Korea; 10 July 2017 through 20 July 2017. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • At LOFAR we measure the radio emission from extensive air showers (EAS) in the frequency band of 30 - 80 MHz in dual-polarized antennas. Through an accurate antenna calibration we can determine the complete set of four Stokes parameters that uniquely determine the linear and circular polarization of the radio signal for an EAS. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is explained as due to the interfering contributions from the two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the Askaryan effect. The measured data show a quantitative agreement with microscopic CORSIKA/CoREAS calculations. Having a very detailed understanding of radio emission from EAS, opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.
  •  
20.
  • Trinh, T. N. G., et al. (författare)
  • Circular polarization of radio emission from air showers in thunderstorm conditions
  • 2017
  • Ingår i: 7th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2016). - : E D P SCIENCES. - 9782759890156
  • Konferensbidrag (refereegranskat)abstract
    • We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects of atmospheric electric fields in thunderclouds. Therefore, measuring the intensity and polarization of radio emission from cosmic ray extensive air showers during thunderstorm conditions provides a new tool to probe the atmospheric electric fields present in thunderclouds.
  •  
21.
  • Trinh, T. N. G., et al. (författare)
  • Thunderstorm electric fields probed by extensive air showers through their polarized radio emission
  • 2017
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 95:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We observe a large fraction of circular polarization in radio emission from extensive air showers recorded during thunderstorms, much higher than in the emission from air showers measured during fair-weather circumstances. We show that the circular polarization of the air showers measured during thunderstorms can be explained by the change in the direction of the transverse current as a function of altitude induced by atmospheric electric fields. Thus by using the full set of Stokes parameters for these events, we obtain a good characterization of the electric fields in thunderclouds. We also measure a large horizontal component of the electric fields in the two events that we have analyzed.
  •  
22.
  • Winchen, T., et al. (författare)
  • Cosmic ray physics with the LOFAR radio telescope
  • 2019
  • Ingår i: 26th Extended European Cosmic Ray Symposium, 6–10 July 2018, Altai State University, Barnaul-Belokurikha, Russian Federation. - : Institute of Physics (IOP). ; , s. 1-6
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum X max , the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g cm -2 . With a densely instrumented circular area of roughly 320 m 2 , LOFAR is targeting for cosmic ray astrophysics in the energy range 10 16 -10 18 eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope. © Published under licence by IOP Publishing Ltd.
  •  
23.
  • Winchen, T., et al. (författare)
  • Properties of the Lunar Detection Mode for ZeV-Scale Particles with LOFAR
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The steep decrease of the flux of ultra-high energy cosmic rays (UHECR) provides a challenge to answer the long standing question about their origin and nature. A significant increase in detector volume may be achieved by employing Earth's moon as a detector that is read out using existing Earth-bound radio telescopes by searching for the radio pulses emitted by the particle shower in the lunar rock. In this contribution we will report on the properties of a corresponding detection mode currently under development for the LOFAR Radio telescope.
  •  
24.
  • Winchen, T., et al. (författare)
  • Status of the lunar detection mode for cosmic particles of LOFAR
  • 2019
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP). ; , s. 1-7
  • Konferensbidrag (refereegranskat)abstract
    • Cosmic particles hitting Earth's moon produce radio emission via the Askaryan effect. If the resulting radio ns-pulse can be detected by radio telescopes, this technique potentially increases the available collective area for ZeV scale particles by several orders of magnitude compared to current experiments. The LOw Frequency ARray (LOFAR) is the largest radio telescope operating in the optimum frequency regime for this technique. In this contribution, we report on the status of the implementation of the lunar detection mode at LOFAR. © Published under licence by IOP Publishing Ltd.
  •  
25.
  •  
26.
  • Buitink, S., et al. (författare)
  • Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 90:8, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve longstanding issues such as the transition from Galactic to extra-Galactic origin and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth’s atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the Low Frequency Array (LOFAR) radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17  g/cm2.
  •  
27.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers
  • 2017
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 89, s. 23-29
  • Tidskriftsartikel (refereegranskat)abstract
    • For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N = 10(6) (n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum X-max. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred X-max between 3.5 and 11 g/cm(2), for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm(2). These offsets were found to be proportional to the geometric distance to X-max. We have compared the results to a simple model based on the Cherenkov angle. For the 120-250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in X-max compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of X-max measurements. (C) 2017 Elsevier B.V. All rights reserved.
  •  
28.
  • Corstanje, A., et al. (författare)
  • Timing calibration and spectral cleaning of LOFAR time series data
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a method for spectral cleaning and timing calibration of short voltage time series data from individual radio interferometer receivers. It makes use of the phase differences in Fast Fourier Transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are stable over time, while being approximately uniform-random for a sum over many sources or for noise. Using only milliseconds-long datasets, the method finds the strongest interfering transmitters, a first-order solution for relative timing calibrations, and faulty data channels. No knowledge of gain response or quiescent noise levels of the receivers is required. With relatively small data volumes, this approach is suitable for use in an online system monitoring setup for interferometric arrays. We have applied the method to our cosmic-ray data collection, a collection of measurements of short pulses from extensive air showers, recorded by the LOFAR radio telescope. Per air shower, we have collected 2 ms of raw time series data for each receiver. The spectral cleaning has a calculated optimal sensitivity corresponding to a power signal-to-noise ratio of 0.08 (or -11 dB) in a spectral window of 25 kHz, for 2 ms of data in 48 antennas. This is well sufficient for our application. Timing calibration across individual antenna pairs has been performed at 0.4 ns precision; for calibration of signal clocks across stations of 48 antennas the precision is 0.1 ns. Monitoring differences in timing calibration per antenna pair over the course of the period 2011 to 2015 shows a precision of 0.08 ns, which is useful for monitoring and correcting drifts in signal path synchronizations. A cross-check method for timing calibration is presented, using a pulse transmitter carried by a drone flying over the array. Timing precision is similar, 0.3 ns.
  •  
29.
  •  
30.
  • Nelles, A., et al. (författare)
  • A new way of air shower detection : measuring the properties of cosmic rays with LOFAR
  • 2015
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 632:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the electromagnetic cascade creates radiation, which we detect at frequencies of tens of MHz with the LOFAR radio telescope in the Netherlands. After many years of struggling to understand the emission mechanisms, the radio community has achieved the breakthrough. We are now able to determine direction, energy, and type of the shower- inducing primary particle from the radio measurements. The large number of antennas at LOFAR allows us to have a high precision and very detailed measurements. We will elaborate on the shower reconstruction, a precise description of the intensity of the radio signal at ground level (at frequencies from 10 to 240 MHz), a precise measurement of the shape of the radio wavefront, and on the reconstruction of the shower energy.
  •  
31.
  •  
32.
  • Rossetto, L., et al. (författare)
  • Measurement of cosmic rays with LOFAR
  • 2016
  • Ingår i: XIV INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2015), PTS 1-7. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) is a multipurpose radio -antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic -ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio -signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio -signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 10(17) - 10(18) eV.
  •  
33.
  • Schellart, P., et al. (författare)
  • Polarized radio emission from extensive air showers measured with LOFAR
  • 2014
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.
  •  
34.
  • Thoudam, Satyendra, et al. (författare)
  • Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 73, s. 34-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.
  •  
35.
  • Trinh, T. N. G., et al. (författare)
  • Influence of atmospheric electric fields on the radio emission from extensive air showers
  • 2016
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 93:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of 30–80 MHz on the magnitude of the atmospheric electric field. In this work we present an explanation of this dependence based on Monte Carlo simulations, supported by arguments based on electron dynamics in air showers and expressed in terms of a simplified model. We show that by extending the frequency window to lower frequencies, additional sensitivity to the atmospheric electric field is obtained.
  •  
36.
  • Winchen, Tobias, et al. (författare)
  • Overview and status of the lunar detection of cosmic particles with LOFAR
  • 2018
  • Ingår i: Proceedings of Science. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • When a cosmic particle hits matter it produces radio emission via the Askaryan effect. This allows to use Earth's moon as detector for cosmic particles by searching for these ns-pulses with radio telescopes. This technique potentially increases the available collective area by several orders of magnitude compared to current experiments. The LOw Frequency ARray (LOFAR) is the largest radio telescope operating in the optimum frequency regime for corresponding searches. In this contribution, we report on the design and status of the implementation of the lunar detection mode at LOFAR. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
37.
  • Bonardi, Antonio, et al. (författare)
  • Towards real-time cosmic-ray identification with the LOw Frequency ARay
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The radio signals emitted by Extensive Air Showers have been successfully used for the last decade by LOFAR to reconstruct the properties of the primary cosmic rays. Since an effective real-time recognition system for the very short radio pulses is lacking, cosmic-ray acquisition is currently triggered by an external array of particle detector, called LORA, limiting the LOFAR collecting area to the area covered by LORA. A new algorithm for the real-time cosmic-ray detection has been developed for the LOFAR Low Band Antenna, which are sensitive between 10 and 90 MHz, and is here presented together with the latest results.
  •  
38.
  • Corstanje, A., et al. (författare)
  • LOFAR : Detecting Cosmic Rays with a Radio Telescope
  • 2011
  • Ingår i: Proceedings of the 32nd International Cosmic Ray Conference. - : International Union of Pure and Applied Physics (IUPAP). ; , s. 192-195
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ideal for the detection of broadband radio pulses generated in cosmic ray air showers. The core of LOFAR consists of 24 stations within 4 square kilometers, and each station contains 96 low-band antennas and 48 high-band antennas. This dense instrumentation will allow detailed studies of the lateral distribution of the radio signal in a frequency range of 10-250 MHz. Such studies are key to understanding the various radio emission mechanisms within the air shower, as well as for determining the potential of the radio technique for primary particle identification. We present the status of the LOFAR cosmic ray program, including the station design and hardware, the triggering and filtering schemes, and our initial observations of cosmic-ray-induced radio pulses.
  •  
39.
  • Rossetto, Laura, et al. (författare)
  • Latest results on the analysis of the radio frequency spectrum emitted by high energy air showers with LOFAR
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) is a multi-purpose radio antenna array aimed to detect radio signals in the frequency range 10 - 240 MHz, covering a large surface in Northern Europe with a higher density in the Netherlands. Analytical calculations and simulation studies performed in the 2000s indicate a dependence of the radio frequency spectrum on cosmic-ray characteristics. The high number density of radio antennas at the LOFAR core allows to characterise the observed cascade in a detailed way. The radio signal emitted by air showers in the atmosphere has been studied accurately in the 30 - 80 MHz frequency range. The analysis has been conducted on simulated events and on real data detected by LOFAR since 2011. The final aim of this study is to find an independent method to infer information of primary cosmic rays for improving the reconstruction of primary particle parameters. Results show a strong dependence of the frequency spectrum on the distance to the shower axis for both real data and simulations. Furthermore, results show that this method is very sensitive to the precision in reconstructing the position of the shower axis at ground, and to different antenna calibration procedures. A correlation between the frequency spectrum and geometrical distance to the shower maximum development X-max has also been investigated.
  •  
40.
  • Schellart, P., et al. (författare)
  • Recent results from cosmic-ray measurements with LOFAR
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 115-118
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the Low Frequency Array, is currently the world's largest distributed radio telescope observing at frequencies below 240 MHz. LOFAR is measuring cosmic-ray induced air-showers since June 2011 and has collected several hundreds of events with hundreds of antennas per individual event. We present measurements of the radio signal strength as well as high-precision measurements of wavefront curvature and polarization. These will enable us to disentangle the different emission mechanisms at play, such as geomagnetic radiation, charge excess, and Askaryan or Cherenkov effects, leading to a full understanding of the air-shower radio emission. Furthermore we give a first example on how the full complexity of the signal enables radio measurements to be used to study primary particle composition.
  •  
41.
  • Schreurs, Guido, et al. (författare)
  • Benchmarking analogue models of brittle thrust wedges
  • 2016
  • Ingår i: Journal of Structural Geology. - : Elsevier BV. - 0191-8141 .- 1873-1201. ; 92, s. 116-139
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing, and pop-up width from model to nature.
  •  
42.
  •  
43.
  •  
44.
  • Thoudam, Satyendra, et al. (författare)
  • LORA : A scintillator array for LOFAR to measure extensive air showers
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 767, s. 339-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of the radio emission from extensive air showers, induced by high-energy cosmic rays, is one of the key science projects of the LOFAR radio telescope. The LOfar Radboud air shower Array (LORA) has been installed in the core of LOFAR in the Netherlands. The main purpose of LORA is to measure the properties of air showers and to trigger the read-out of the LOFAR radio antennas to register extensive air showers. The experimental set-up of the array of scintillation detectors and its performance are described.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy