SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schenk Jonathan) "

Search: WFRF:(Schenk Jonathan)

  • Result 1-20 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Arridge, Christopher S., et al. (author)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Journal article (peer-reviewed)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
3.
  • Bastviken, David, et al. (author)
  • Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers - calibration, data processing, and an open-source make-it-yourself logger
  • 2020
  • In: Biogeosciences. - : COPERNICUS GESELLSCHAFT MBH. - 1726-4170 .- 1726-4189. ; 17:13, s. 3659-3667
  • Journal article (peer-reviewed)abstract
    • A major bottleneck regarding the efforts to better quantify greenhouse gas fluxes, map sources and sinks, and understand flux regulation is the shortage of low-cost and accurate-enough measurement methods. The studies of methane (CH4) - a long-lived greenhouse gas increasing rapidly but irregularly in the atmosphere for unclear reasons, and with poorly understood source-sink attribution - suffer from such method limitations. This study presents new calibration and data processing approaches for use of a low-cost CH4 sensor in flux chambers. Results show that the change in relative CH4 levels can be determined at rather high accuracy in the 2-700 ppm mole fraction range, with modest efforts of collecting reference samples in situ and without continuous access to expensive reference instruments. This opens possibilities for more affordable and time-effective measurements of CH4 in flux chambers. To facilitate such measurements, we also provide a description for building and using an Arduino logger for CH4, carbon dioxide (CO2), relative humidity, and temperature.
  •  
4.
  • Meier, Markus, et al. (author)
  • Comparing reconstructed past variations and future projections of the Baltic sea ecosystem first results from multi model ensemble simulations
  • 2012
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 7:3, s. 034005-
  • Journal article (peer-reviewed)abstract
    • Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850-2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850-2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961-2098, scenario simulations were driven by regionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air-and riverborne nutrient load scenarios (ranging from a pessimistic 'business-as-usual' to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems.
  •  
5.
  • Menkveld, Albert J., et al. (author)
  • Nonstandard Errors
  • 2024
  • In: JOURNAL OF FINANCE. - : Wiley-Blackwell. - 0022-1082 .- 1540-6261. ; 79:3, s. 2339-2390
  • Journal article (peer-reviewed)abstract
    • In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
  •  
6.
  • Pajala, Gustav, et al. (author)
  • Higher apparent gas transfer velocities for CO2 compared to CH4 in small lakes
  • 2023
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:23, s. 8578-8587
  • Journal article (peer-reviewed)abstract
    • Large greenhouse gas emissions occur via the release of carbon dioxide (CO2) and methane (CH4) from the surface layer of lakes. Such emissions are modeled from the air-water gas concentration gradient and the gas transfer velocity (k). The links between k and the physical properties of the gas and water have led to the development of methods to convert k between gases through Schmidt number normalization. However, recent observations have found that such normalization of apparent k estimates from field measurements can yield different results for CH4 and CO2. We estimated k for CO2 and CH4 from measurements of concentration gradients and fluxes in four contrasting lakes and found consistently higher (on an average 1.7 times) normalized apparent k values for CO2 than CH4. From these results, we infer that several gas-specific factors, including chemical and biological processes within the water surface microlayer, can influence apparent k estimates. We highlight the importance of accurately measuring relevant air-water gas concentration gradients and considering gas-specific processes when estimating k.
  •  
7.
  •  
8.
  •  
9.
  • Pajala, Gustav, et al. (author)
  • The effects of water column dissolved oxygen concentrations on lake methane emissions : results from a whole-lake oxygenation experiment
  • 2023
  • In: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 128:11
  • Journal article (peer-reviewed)abstract
    • Lakes contribute 9%–19% of global methane (CH4) emissions to the atmosphere. Dissolved molecular oxygen (DO) in lakes can inhibit the production of CH4 and promote CH4 oxidation. DO is therefore often considered an important regulator of CH4 emissions from lakes. Presence or absence of DO in the water above the sediments can affect CH4 production and emissions by (a) influencing if methane production can be fueled by the most reactive organic matter in the top sediment layer or rely on deeper and less degradable organic matter, and (b) enabling CH4 accumulation in deep waters and potentially large emissions upon water column turnover. However, the relative importance of these two DO effects on CH4 fluxes is still unclear. We assessed CH4 fluxes from two connected lake basins in northern boreal Sweden where one was experimentally oxygenated. Results showed no clear difference in summer CH4 emissions attributable to water column DO concentrations. Large amounts of CH4 accumulated in the anoxic hypolimnion of the reference basin but little of this may have been emitted because of incomplete mixing, and effective methane oxidation of stored CH4 reaching oxic water layers. Accordingly, ≤24% of the stored CH4 was likely emitted in the experimental lake. Overall, our results suggest that hypolimnetic DO and water column CH4 storage might have a smaller impact on CH4 emissions in boreal forest lakes than previous estimates, yet potential fluxes associated with water column turnover events remain a significant uncertainty in lake CH4 emission estimates.
  •  
10.
  • Rudberg, David, et al. (author)
  • Contribution of gas concentration and transfer velocity to CO2 flux variability in northern lakes
  • 2024
  • In: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590.
  • Journal article (peer-reviewed)abstract
    • The CO( 2)flux (FCO2) from lakes to the atmosphere is a large component of the global carbon cycle anddepends on the air-water CO2concentration gradient (Delta CO2) and the gas transfer velocity (k). Both Delta CO2 and k can vary on multiple timescales and understanding their contributions toFCO(2)is important for explaining var-iability influxes and developing optimal sampling designs. We measuredFCO2 and Delta CO(2 )and derivedkforone full ice-free period in 18 lakes usingfloating chambers and estimated the contributions of Delta CO2 and k to FCO2 variability. Generally, kcontributed more than Delta CO2to short-term (1-9d) FCO2 variability. With in creased temporal period, the contribution of k to FCO2 variability decreased, and in some lakes resulted in Delta CO2 contrib-uting more thank to FCO2 variability over the full ice-free period. Increased contribution of Delta CO2 to FCO2 vari-ability over time occurred across all lakes but was most apparent in large-volume southern-boreal lakes and indeeper (>2m) parts of lakes, whereaskwas linked to FCO(2 )variability in shallow waters. Accordingly, knowing the variability of bothk and Delta CO(2 )over time and space is needed for accurate modeling of F CO2 from these vari-ables. We conclude that priority in FCO(2 )assessments should be given to direct measurements of FCO2 at multiplesites when possible, or otherwise from spatially distributed measurements of Delta CO(2 )combined with k- models that incorporate spatial variability of lake thermal structure and meteorology.
  •  
11.
  • Rudberg, David, et al. (author)
  • Diel Variability of CO2 Emissions From Northern Lakes
  • 2021
  • In: Journal of Geophysical Research - Biogeosciences. - Hoboken, United States : John Wiley & Sons. - 2169-8953 .- 2169-8961. ; 126:10
  • Journal article (peer-reviewed)abstract
    • Lakes are generally supersaturated in carbon dioxide (CO2) and emitters of CO2 to the atmosphere. However, estimates of CO2 flux ((Formula presented.)) from lakes are seldom based on direct flux measurements and usually do not account for nighttime emissions, yielding risk of biased assessments. Here, we present direct (Formula presented.) measurements from automated floating chambers collected every 2–3 hr and spanning 115 24 hr periods in three boreal lakes during summer stratification and before and after autumn mixing in the most eutrophic lake of these. We observed 40%–67% higher mean (Formula presented.) in daytime during periods of surface water CO2 supersaturation in all lakes. Day-night differences in wind speed were correlated with the day-night (Formula presented.) differences in the two larger lakes, but in the smallest and most wind-sheltered lake peaks of (Formula presented.) coincided with low-winds at night. During stratification in the eutrophic lake, CO2 was near equilibrium and diel variability of (Formula presented.) insignificant, but after autumn mixing (Formula presented.) was high with distinct diel variability making this lake a net CO2 source on an annual basis. We found that extrapolating daytime measurements to 24 hr periods overestimated (Formula presented.) by up to 30%, whereas extrapolating measurements from the stratified period to annual rates in the eutrophic lake underestimated (Formula presented.) by 86%. This shows the importance of accounting for diel and seasonal variability in lake CO2 emission estimates.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Schenk, Jonathan, 1992- (author)
  • Methane dynamics in northern lakes : Insights from multi-scale observations
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Methane (CH4) is a potent greenhouse gas which is emitted to the atmosphere from both natural and anthropogenic sources. Current evidence indicates that lakes account for a large part of the global emissions of CH4, but their contribution is difficult to quantify because of large temporal and spatial variability in processes leading to CH4 fluxes from lakes to the atmosphere. Making sense of the complexity and variability of CH4 emissions from lakes requires observations covering the range of temporal and spatial scales at which these processes occur, both within and between lakes. Northern regions are of particular interest for such studies because they contain a larger number of lakes than any other region in the world and they are disproportionately affected by climate change, with possible consequences for future CH4 emissions.The aim of this thesis was to investigate patterns of CH4 dynamics and emissions in several lakes distributed in different climatic regions of Sweden, paying particular attention to spatial and temporal variability of CH4 fluxes and concentrations. Fluxes, concentrations, carbon stable isotope signature of CH4, and a range of commonly monitored lake characteristics were measured several times during one year at multiple locations in each lake. The measurements provided an extensive set of observations of CH4 concentrations and fluxes in lakes, together with possible environmental drivers. These observations were then used to investigate patterns of CH4 dynamics in northern lakes and to assess the ability of empirical and process-based models to predict CH4 concentrations and fluxes in lakes.The results indicate that simple empirical models, consisting of linear regressions between explanatory variables and CH4 fluxes and concentrations averaged over the lake surface and ice-free period of the year, can be useful in some specific cases (for example describing ebullitive fluxes from total phosphorus or chlorophyll a concentrations). However, it was also noted that using such models for extrapolation can lead to large errors, especially if the observations do not account for temporal and spatial variability of CH4 fluxes and concentrations. An example of high variability was seen in day-night measurements of CH4 fluxes in four lakes over several months. To try to compensate for some of the shortcomings of empirical models, an established process-based and one-dimensional lake model was used to simulate CH4 concentration in the water column of the studied lakes. Predictions were in good agreement with observations in several of the investigated lakes, considering that the model was not pre-calibrated for any of the lake specifically. However, it was also clear that there can be key processes that require specific consideration in process-based models, and some degree of simplification is needed, especially when detailed information on the modelled systems is not available. The simplifications and assumptions that need to be made can be informed by the study and observation of relevant processes in situ. For example, groundwater was found to potentially contribute a major part of CH4 stored in one small boreal lake using measurements of stable isotope signature of CH4 in littoral sediment and deep water of that lake, as well as in the groundwater in the mire next to it. Stable isotope measurements in five other lakes also revealed consistent differences in CH4 sources to the surface and deep zones of lakes when they are separated by thermal stratification of the water column. Such knowledge could be used in the design of numerical models of lakes with the objective to improve predictions of current and future emissions of CH4 from these environments.Overall, this thesis contributes to the current knowledge on assessment of CH4 emissions from lakes at several temporal and spatial scales. It also emphasizes critical aspects which must be considered to reduce bias in future empirical and process-based models of CH4 in lakes.
  •  
17.
  • Schenk, Jonathan, 1992-, et al. (author)
  • Methane in Lakes : Variability in Stable Carbon Isotopic Composition and the Potential Importance of Groundwater Input
  • 2021
  • In: Frontiers in Earth Science. - Lausanne, Switzerland : Frontiers Media S.A.. - 2296-6463. ; 9
  • Journal article (peer-reviewed)abstract
    • Methane (CH4) is an important component of the carbon (C) cycling in lakes. CH4 production enables carbon in sediments to be either reintroduced to the food web via CH4 oxidation or emitted as a greenhouse gas making lakes one of the largest natural sources of atmospheric CH4. Large stable carbon isotopic fractionation during CH4 oxidation makes changes in 13C:12C ratio (δ13C) a powerful and widely used tool to determine the extent to which lake CH4 is oxidized, rather than emitted. This relies on correct δ13C values of original CH4 sources, the variability of which has rarely been investigated systematically in lakes. In this study, we measured δ13C in CH4 bubbles in littoral sediments and in CH4 dissolved in the anoxic hypolimnion of six boreal lakes with different characteristics. The results indicate that δ13C of CH4 sources is consistently higher (less 13C depletion) in littoral sediments than in deep waters across boreal and subarctic lakes. Variability in organic matter substrates across depths is a potential explanation. In one of the studied lakes available data from nearby soils showed correspondence between δ13C-CH4 in groundwater and deep lake water, and input from the catchment of CH4 via groundwater exceeded atmospheric CH4 emissions tenfold over a period of 1 month. It indicates that lateral hydrological transport of CH4 can explain the observed δ13C-CH4 patterns and be important for lake CH4 cycling. Our results have important consequences for modelling and process assessments relative to lake CH4 using δ13C, including for CH4 oxidation, which is a key regulator of lake CH4 emissions.
  •  
18.
  •  
19.
  • Sieczko, Anna Katarzyna, 1978-, et al. (author)
  • Diel variability of methane emissions from lakes
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - Washington, DC 20001 United States : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:35, s. 21488-21494
  • Journal article (peer-reviewed)abstract
    • Lakes are considered the second largest natural source of atmospheric methane (CH4). However, current estimates are still uncertain and do not account for diel variability of CH4 emissions. In this study, we performed high-resolution measurements of CH4 flux from several lakes, using an automated and sensor-based flux measurement approach (in total 4,580 measurements), and demonstrated a clear and consistent diel lake CH4 flux pattern during stratification and mixing periods. The maximum of CH4 flux were always noted between 10:00 and 16:00, whereas lower CH4 fluxes typically occurred during the nighttime (00:00–04:00). Regardless of the lake, CH4 emissions were on an average 2.4 higher during the day compared to the nighttime. Fluxes were higher during daytime on nearly 80% of the days. Accordingly, estimates and extrapolations based on daytime measurements only most likely result in overestimated fluxes, and consideration of diel variability is critical to properly assess the total lake CH4 flux, representing a key component of the global CH4 budget. Hence, based on a combination of our data and additional literature information considering diel variability across latitudes, we discuss ways to derive a diel variability correction factor for previous measurements made during daytime only.
  •  
20.
  • Sieczko, Anna, et al. (author)
  • Minor impacts of rain on methane flux from hemiboreal, boreal, and subarctic lakes
  • 2023
  • In: Science of the Total Environment. - : ELSEVIER. - 0048-9697 .- 1879-1026. ; 895
  • Journal article (peer-reviewed)abstract
    • Methane (CH4) emissions (FCH4) from northern freshwater lakes are not only significant but also highly variable in time and one driver variable suggested to be important is precipitation. Rain can have various, potentially large effects on FCH4 across multiple time frames, and verifying the impact of rain on lake FCH4 is key to understand both contemporary flux regulation, and to predict future FCH4 related to possible changes in frequency and intensity of rainfall from climate change. The main objective of this study was to assess the short-term impact of typically occurring rain events with different intensity on FCH4 from various lake types located in hemiboreal, boreal, and subarctic Sweden. In spite of high time resolution automated flux measurements across different depth zones and covering numerous commonly types of rain events in northern areas, in general, no strong impact on FCH4 during and within 24 h after the rainfall could be observed. Only in deeper lake areas and during longer rain events FCH4 was weakly related to rain (R2 = 0.29, p < 0.05), where a minor FCH4 decrease during the rain was identified, suggesting that direct rainwater input, during greater rainfall, may decrease FCH4 by dilution of surface water CH4. Overall, this study indicates that typical rain events in the studied regions have minor direct short-term effects on FCH4 from northern lakes and do not enhance FCH4 from shallow and deeper parts of lakes during and up to 24-h after the rainfall. Instead, other factors such as wind speed, water temperature and pressure changes were more strongly correlated with lake FCH4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-20 of 20
Type of publication
journal article (11)
other publication (8)
doctoral thesis (1)
Type of content
peer-reviewed (11)
other academic/artistic (1)
Author/Editor
Bastviken, David (6)
Bastviken, David, 19 ... (6)
Karlsson, Jan (5)
Bastviken, David, Pr ... (5)
Laudon, Hjalmar (2)
Wolf, Michael (1)
show more...
Szaszi, Barnabas (1)
Dreber Almenberg, An ... (1)
Holzmeister, Felix (1)
Huber, Juergen (1)
Johannesson, Magnus (1)
Kirchler, Michael (1)
Barabash, Stas (1)
Mousis, Olivier (1)
Schenk, Frederik (1)
Zorita, Eduardo (1)
Walther, Thomas (1)
Saur, Joachim (1)
Arheimer, Berit (1)
Sawakuchi, Henrique ... (1)
Eilola, Kari (1)
Kuznetsov, Ivan (1)
Havenhand, Jonathan ... (1)
Zarka, Philippe (1)
Chen, Jian (1)
Hartmann, Simon (1)
Blenckner, Thorsten (1)
Niiranen, Susa (1)
Gustafsson, Bo G. (1)
Meier, Markus (1)
Li, Hui (1)
Wahlund, Jan-Erik (1)
Hansson, Anders, 197 ... (1)
Donnelly, Chantal (1)
Ostberg, Per (1)
Arridge, Christopher ... (1)
Agnor, Craig B. (1)
Andre, Nicolas (1)
Baines, Kevin H. (1)
Fletcher, Leigh N. (1)
Gautier, Daniel (1)
Hofstadter, Mark D. (1)
Jones, Geraint H. (1)
Lamy, Laurent (1)
Langevin, Yves (1)
Nettelmann, Nadine (1)
Russell, Christopher ... (1)
Stallard, Tom (1)
Tiscareno, Matthew S ... (1)
Tobie, Gabriel (1)
show less...
University
Linköping University (18)
Umeå University (6)
University of Gothenburg (2)
Stockholm University (2)
Uppsala University (1)
Luleå University of Technology (1)
show more...
Stockholm School of Economics (1)
show less...
Language
English (20)
Research subject (UKÄ/SCB)
Natural sciences (18)
Engineering and Technology (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view