SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schweickert Lucas) "

Sökning: WFRF:(Schweickert Lucas)

  • Resultat 1-29 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cui, Guo Dong, et al. (författare)
  • Interfacing On-Demand Quantum Dot Single Photons with a Resonant Atomic Quantum Memory
  • 2023
  • Ingår i: Quantum 2.0: Proceedings Optica Quantum 2.0 Conference and Exhibition. - : Optica Publishing Group.
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate coherent interactions between quantum dot single photons and a resonant 87Rb ensemble in the experiment and show an open quantum system analysis. These results could help build fast hybrid quantum networks.
  •  
2.
  • Elshaari, Ali W., et al. (författare)
  • Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide
  • 2021
  • Ingår i: Advanced Quantum Technologies. - : Wiley. - 2511-9044. ; 4:6, s. 2100032-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid integration provides an important avenue for incorporating atom-like solid-state single-photon emitters into photonic platforms that possess no optically-active transitions. Hexagonal boron nitride (hBN) is particularly interesting quantum emitter for hybrid integration, as it provides a route for room-temperature quantum photonic technologies, coupled with its robustness and straightforward activation. Despite the recent progress of integrating hBN emitters in photonic waveguides, a deterministic, site-controlled process remains elusive. Here, the integration of selected hBN emitter in silicon nitride waveguide is demonstrated. A small misalignment angle of 4° is shown between the emission-dipole orientation and the waveguide propagation direction. The integrated emitter maintains high single-photon purity despite subsequent encapsulation and nanofabrication steps, delivering quantum light with zero delay second order correlation function (Formula presented.). The results provide an important step toward deterministic, large scale, quantum photonic circuits at room temperature using atom-like single-photon emitters.
  •  
3.
  • Gyger, Samuel, et al. (författare)
  • Metropolitan single-photon distribution at 1550 nm for random number generation
  • 2022
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 121:19, s. 194003-
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum communication networks will connect future generations of quantum processors, enable metrological applications, and provide security through quantum key distribution. We present a testbed that is part of the municipal fiber network in the greater Stockholm metropolitan area for quantum resource distribution through a 20 km long fiber based on semiconductor quantum dots emitting in the telecom C-band. We utilize the service to generate random numbers passing the NIST test suite SP800-22 at a subscriber 8 km outside of the city with a bit rate of 23.4 kbit/s.
  •  
4.
  • Gyger, Samuel, et al. (författare)
  • Metropolitan Single-Photon Distribution at 1550 nm for Random Number Generation
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics, CLEO 2023. - : Institute of Electrical and Electronics Engineers Inc..
  • Konferensbidrag (refereegranskat)abstract
    • Quantum communication networks are used for QKD and metrological applications. We present research connecting two nodes ≈ 20 kilometers apart over the municipal fiber network using semiconductor quantum dots emitting at 1550 nm.
  •  
5.
  • Gyger, Samuel, et al. (författare)
  • On-chip integration of reconfigurable quantum photonics with superconducting photodetectors
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings. - : Institute of Electrical and Electronics Engineers Inc..
  • Konferensbidrag (refereegranskat)abstract
    • Scaling up quantum optics experiments requires on-chip reconfigurable quantum photonics, but their integration with detectors is a challenge. We show microelectrome-chanical reconfiguration of photonic circuits with on-chip superconducting single-photon detectors and demonstrate key applications. 
  •  
6.
  • Gyger, Samuel, et al. (författare)
  • Reconfigurable photonics with on-chip single-photon detectors
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrated quantum photonics offers a promising path to scale up quantum optics experiments by miniaturizing and stabilizing complex laboratory setups. Central elements of quantum integrated photonics are quantum emitters, memories, detectors, and reconfigurable photonic circuits. In particular, integrated detectors not only offer optical readout but, when interfaced with reconfigurable circuits, allow feedback and adaptive control, crucial for deterministic quantum teleportation, training of neural networks, and stabilization of complex circuits. However, the heat generated by thermally reconfigurable photonics is incompatible with heat-sensitive superconducting single-photon detectors, and thus their on-chip co-integration remains elusive. Here we show low-power microelectromechanical reconfiguration of integrated photonic circuits interfaced with superconducting single-photon detectors on the same chip. We demonstrate three key functionalities for photonic quantum technologies: 28 dB high-extinction routing of classical and quantum light, 90 dB high-dynamic range single-photon detection, and stabilization of optical excitation over 12 dB power variation. Our platform enables heat-load free reconfigurable linear optics and adaptive control, critical for quantum state preparation and quantum logic in large-scale quantum photonics applications. Integrated photonics are promising to scale up quantum optics. Here the authors combine low-power microelectromechanical control and superconducting single-photon detectors on the same chip and demonstrate routing, high-dynamic-range detection, and power stabilization.
  •  
7.
  • Hanschke, Lukas, et al. (författare)
  • Coherent scattering: either sub-natural linewidth or anti-bunched light
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Epitaxial quantum dots have emerged as one of the best single–photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the emission of photons with subnatural–linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural–linewidth photons exhibit simultaneously single–photon characteristics, i.e. show antibunching as a signature of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural–linewidth and single photoncharacter is not possible with simple resonant excitation. First, we independently confirm single–photon character and subnatural–linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, and can be explained by a fundamental model considering higher-order photon correlations.
  •  
8.
  • Hanschke, Lukas, et al. (författare)
  • Origin of Antibunching in Resonance Fluorescence
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emission.
  •  
9.
  • Jöns, Klaus D., et al. (författare)
  • Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect similar to 200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S-CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 +/- 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
  •  
10.
  •  
11.
  • Lettner, Thomas, et al. (författare)
  • GaAs Quantum Dot in a Parabolic Microcavity Tuned to Rb-87 D-1
  • 2020
  • Ingår i: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 7:1, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D-1 line (795 nm).
  •  
12.
  • Lettner, Thomas, et al. (författare)
  • Strain-controlled quantum dot fine-structure for entangled-photon generation at 1550 nm
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Entangled-photon generation at 1550nm in the telecom C-band is of critical importance, since it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled pairs of photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show suppression of the fine-structure for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons in the telecom C-band. At the lowest fine-structure setting, we obtain a maximum fidelity of (90.0 ± 2.7)% (concurrence of (87.5 ± 3.1)%). The concurrence remains high also for moderate (weak) temporal-filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for the exploitation of entangled photons from quantum dots in fiber-based quantum communication protocols.
  •  
13.
  • Lettner, Thomas, et al. (författare)
  • Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
  • 2021
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:24, s. 10501-10506
  • Tidskriftsartikel (refereegranskat)abstract
    • Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 +/- 2.7% (concurrence of 87.5 +/- 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols.
  •  
14.
  • Lin, Zuzeng, et al. (författare)
  • Efficient and versatile toolbox for analysis of time-tagged measurements
  • 2021
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquisition and analysis of time-tagged events is a ubiquitous tool in scientific and industrial applications. With increasing time resolution, number of input channels, and acquired events, the amount of data can be overwhelming for standard processing techniques. We developed the Extensible Time-tag Analyzer (ETA), a powerful and versatile, yet easy to use software to efficiently analyze and display time-tagged data. Our tool allows for flexible extraction of correlation from time-tagged data beyond start-stop measurements that were traditionally used. A combination of state diagrams and simple code snippets allows for analysis of arbitrary complexity while keeping computational efficiency high.
  •  
15.
  • Lin, Zuzeng, et al. (författare)
  • Efficient toolbox for correlation of time tagged measurements
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Extracting correlations from time-series data is a wide-spread analysing method for large data sets, giving insights in temporal dynamics over several orders ofmagnitudes. However, the efficient correlation extraction and processing of big data is still a challenge widely encountered, independent of the application and research field. In optics, correlations among photon detection events can often yield insight into underlying physical processes. The recent advent of time-tagging techniques for photon detection events with timing resolution compa-rable to the coherence and lifetimes of quantum emitters offers an alternative to the well established start-stop histograms obtained directly with correlation electronics. Here we introduce a versatile toolbox for analysis of time tagged data, enabling extraction of a wide range of information from one measurement. A user of our software can specify the desired analysis method using a combination of graphical and traditional programming. Automatically selecting an appropriate algorithm, a just-in-time compiler combines these two inputs into an intermediate representation, which is then compiled into assembly code optimized for the target computer’s architecture. This procedure optimizes for fast analysis of large time tag files at the cost of upfront compilation time while maintaining flexibility. Our program finds uses in single molecule, LIDAR, quantum entanglement and fluorescence correlation spectroscopy measurements, as well as quantum key distribution protocols in which data from remote detectors needs to be synchronized and correlated. Our software is optimized and modular, offering high processing speed and extensibility.
  •  
16.
  • Prencipe, Alessandro, et al. (författare)
  • Wavelength meter on thin film lithium niobate based on superconducting single photon detectors
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023. - : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • Photonic integrated circuits (PICs) present significant benefits with respect to table-top optical systems regarding footprint, stability, and power consumption. Among the materials used to fabricate PICs, thin film lithium niobate (TFLN) is one of the most attractive ones, as its χ(2) nonlinearity and electro-optic properties allow to implement on-chip light generation and routing [1]. On-chip detection of light has also been demonstrated on TFLN, based on the waveguide integration of superconducting nanowire single photon detectors (SNSPDs) [1]. Combining efficient detectors with TFLN nanophotonic waveguides holds promises for the realization of quantum photonics experiments fully on-chip. On the other hand, the sensitivity of SNSPDs changes with the wavelength of the detected photons [2], setting a boundary to the longest detectable wavelength and limiting the use of the wide transparency window of TFLN. However, this wavelength dependency in the response of SNSPDs can be leveraged to achieve new on-chip functionalities. In this work, by performing a straightforward analysis of the light signal measured at different bias currents [2], we operate hairpin SNSPDs on TFLN as waveguide-integrated wavelength-meters in the telecom bandwidth.
  •  
17.
  • Prencipe, Alessandro, et al. (författare)
  • Wavelength-Sensitive Superconducting Single-Photon Detectors on Thin Film Lithium Niobate Waveguides
  • 2023
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 23:21, s. 9748-9752
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium niobate, because of its nonlinear and electro-optical properties, is one of the materials of choice for photonic applications. The development of nanostructuring capabilities of thin film lithium niobate (TFLN) permits fabrication of small footprint, low-loss optical circuits. With the recent implementation of on-chip single-photon detectors, this architecture is among the most promising for realizing on-chip quantum optics experiments. In this Letter, we report on the implementation of superconducting nanowire single-photon detectors (SNSPDs) based on NbTiN on 300 nm thick TFLN ridge nano-waveguides. We demonstrate a waveguide-integrated wavelength meter based on the photon energy dependence of the superconducting detectors. The device operates at the telecom C- and L-bands and has a footprint smaller than 300 × 180 μm2 and critical currents between ∼12 and ∼14 μA, which ensures operation with minimum heat dissipation. Our results hold promise for future densely packed on-chip wavelength-multiplexed quantum communication systems.
  •  
18.
  • Schweickert, Lucas (författare)
  • Correlation spectroscopy with epitaxial quantum dots : Single-photons alone in the dark.
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The advent of quantum computation promises exciting advances, not only in fields like medicine and metrology, but many industries that rely on parameter-heavy calculations or simulation of molecular interaction. At the same time Shor's algorithm for quantum computers presents a threat to current asymmetric encryption protocols used in everyday communication. Flying qubits, i.e. single-photons, can help mitigate this problem via quantum key distribution, which is insusceptible to an increase in computational power. In addition, they can link quantum computers, forming a quantum network, so that quantum states can be transmitted between them. Sources of flying qubits need good performance in key metrics like single--photon purity, repetition rate, indistinguishability and brightness to become useful in these applications. They should ideally emit strongly entangled pairs of photons and be matched to other quantum technologies in bandwidth and emission energy.In this thesis the emission characteristics of single epitaxial quantum dots, the single-photon source of our choice, are investigated. Strongly entangled photon-pair emission is demonstrated for three different quantum-dot systems:InAsP quantum dots embedded in nanowire waveguides, suitable for integration into photonic circuits, show emission of single photons and entangled photon pairs under non-resonant and quasi-resonant excitation. Violation of Bell's inequality is demonstrated using the traditional set of polarization angles.GaAs quantum dots grown in droplet--etched nanoholes are tested with two resonant excitation methods: Using resonance fluorescence, near-unity indistinguishability and re-excitation limited single-photon purity, albeit not simultaneously with laser-inherited bandwidth, are measured. Using two-photon resonant excitation we set a new standard for single-photon purity, can generate pairs of entangled photons but suffer from reduced indistinguishability. In addition, nanofabrication of paraboloid shaped reflectors for enhanced extraction efficiency of photons and strain-tuning of the emission energy into resonance with the 87Rb D1-line are demonstrated.Strain-tunable InAs quantum dots emitting in the telecom C-band are investigated under above-band excitation and two different resonant two-photon excitation techniques, all of which cause pure single-photon emission. Using the robust phonon-assisted two-photon excitation technique, close-to ideal entangled photon-pair emission is demonstrated.For many of these findings photon arrival times were recorded over many hours with temporal precision on the order of 10 ps. We have developed a user-friendly, yet versatile piece of software in order to extract as much information as possible from this vast amount of data.These results will facilitate integration of quantum dot based single- and entangled-photon sources into future quantum networks and quantum key distribution systems.
  •  
19.
  •  
20.
  • Schweickert, Lucas, et al. (författare)
  • On-demand generation of background-free single photons from a solid-state source
  • 2018
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 112:9
  • Tidskriftsartikel (refereegranskat)abstract
    • True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g((2)) (0) = (7.5 +/- 1.6) x 10(-5) without any background subtraction or data processing. To this date, this is the lowest value of g((2)) (0) Peported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 +/- 0.0007) s(-1) and (0.017 +/- 0.001) s(-1), respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.
  •  
21.
  • Schöll, Eva, et al. (författare)
  • Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the degree of indistinguishability of cascaded photons emitted from a three-level quantum ladder system; in our case the biexciton-exciton cascade of semiconductor quantum dots. For the three-level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of noncascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow us to explore a large parameter space. Based on our model, we propose photonic structures to optimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a three-level quantum ladder system.
  •  
22.
  • Schöll, Eva, et al. (författare)
  • Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability
  • 2019
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 19:4, s. 2404-2410
  • Tidskriftsartikel (refereegranskat)abstract
    • Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on demand. One promising candidate is strain free GaAs/A1GaAs quantum dots obtained by aluminum droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V-raw = (95.0(-6.1)(+5.0))%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g., as quantum light sources for quantum repeater architectures.
  •  
23.
  • Schöll, Eva, et al. (författare)
  • The crux of using the cascaded emission of a 3-level quantum ladder system to generate indistinguishable photons
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We investigate the degree of indistinguishability of cascaded photons emitted from a 3–level quantum ladder system; in our case the biexciton–exciton cascade of semiconductor quantum dots. For the 3–level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of non–cascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow to explore a large parameter space. Based on our model, we propose photonic structures too ptimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a 3–level quantum ladder system.
  •  
24.
  • Staffas, Theodor, et al. (författare)
  • 3D scanning quantum LIDAR
  • 2022
  • Ingår i: 2022 Conference on Lasers and Electro-Optics, CLEO 2022. - : Institute of Electrical and Electronics Engineers Inc..
  • Konferensbidrag (refereegranskat)abstract
    • Light Detection and Ranging (LIDAR) is a powerful imaging technique. By utilising a superconducting nanowire single photon detector (SNSPD) we construct a 3D scanning LIDAR system operating with eye-safe infrared laser pulses and millimeter precision. 
  •  
25.
  • Versteegh, Marijn A. M., et al. (författare)
  • Giant Rydberg excitons in Cu2O probed by photoluminescence excitation spectroscopy
  • 2021
  • Ingår i: PHYSICAL REVIEW B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 104:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Rydberg excitons are, with their ultrastrong mutual interactions, giant optical nonlinearities, and very high sensitivity to external fields, promising for applications in quantum sensing and nonlinear optics at the singlephoton level. To design quantum applications it is necessary to know how Rydberg excitons and other excited states relax to lower-lying exciton states. Here, we present photoluminescence excitation spectroscopy as a method to probe transition probabilities from various excitonic states in cuprous oxide. We show giant Rydberg excitons at T = 38 mK with principal quantum numbers up to n = 30, corresponding to a calculated diameter of 3 mu m.
  •  
26.
  • Yang, Lily, et al. (författare)
  • Proximitized Josephson junctions in highly-doped InAs nanowires robust to optical illumination
  • 2021
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 32:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the effects of optical-frequency light on proximitized InAs/Al Josephson junctions based on highly n-doped InAs nanowires at varying incident photon flux and at three different photon wavelengths. The experimentally obtained IV curves were modeled using a resistively shunted junction model which takes scattering at the contact interfaces into account. Despite the fact that the InAs weak link is photosensitive, the Josephson junctions were found to be surprisingly robust, interacting with the incident radiation only through heating, whereas above the critical current our devices showed non-thermal effects resulting from photon exposure. Our work indicates that Josephson junctions based on highly-doped InAs nanowires can be integrated in close proximity to photonic circuits. The results also suggest that such junctions can be used for optical-frequency photon detection through thermal processes by measuring a shift in critical current.
  •  
27.
  • Zeuner, Katharina D., et al. (författare)
  • A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band
  • 2018
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 112:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 mu m with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths. 
  •  
28.
  • Zeuner, Katharina, 1991-, et al. (författare)
  • On-demand generation of entangled photon pairs in the telecom C-band for fiber-based quantum networks
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • On–demand sources of entangled photons for the transmission of quantum information in the telecom C–band are required to realize fiber–based quantum networks. So far, non–deterministic sources of quantum states of light were used for long distance entanglement distribution in this lowest loss wavelength range. However, they are fundamentally limited in either efficiency or security due to their Poissonian emission statistics. Here, we show on–demand generation of entangled photon pairs in the telecom C-band by an InAs/GaAs semiconductor quantum dot. Using a robust phonon–assisted excitation scheme we measurea concurrence of 91.4% and a fidelity of 95.2% to Φ+ . On–demand generation of polarization entangled photons will enable secure quantum communication in fiber–based networks.Furthermore, applying this excitation scheme to several remote quantum dots tuned into resonance will enable first on–demand entanglement distribution over large distances for scalable real–life quantum applications.
  •  
29.
  • Zeuner, Katharina, et al. (författare)
  • On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots
  • 2021
  • Ingår i: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 8:8, s. 2337-2344
  • Tidskriftsartikel (refereegranskat)abstract
    • Entangled photons are an integral part in quantum optics experiments and a key resource in quantum imaging, quantum communication, and photonic quantum information processing. Making this resource available on-demand has been an ongoing scientific challenge with enormous progress in recent years. Of particular interest is the potential to transmit quantum information over long distances, making photons the only reliable flying qubit. Entangled photons at the telecom C-band could be directly launched into single-mode optical fibers, enabling worldwide quantum communication via existing telecommunication infrastructure. However, the on-demand generation of entangled photons at this desired wavelength window has been elusive. Here, we show a photon pair generation efficiency of 69.9 +/- 3.6% in the telecom C-band by an InAs/GaAs semiconductor quantum dot on a metamorphic buffer layer. Using a robust phonon-assisted two-photon excitation scheme we measure a maximum concurrence of 91.4 +/- 3.8% and a peak fidelity to the Phi(+) state of 95.2 +/- 1.1%, verifying on-demand generation of strongly entangled photon pairs and marking an important milestone for interfacing quantum light sources with our classical fiber networks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-29 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy