SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schweika Werner) "

Sökning: WFRF:(Schweika Werner)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jacobs, Philipp, et al. (författare)
  • A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data.
  • 2015
  • Ingår i: Journal of Applied Crystallography. - 1600-5767. ; 48:Pt 6, s. 1627-1636
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages.
  •  
2.
  • Jacobs, Philipp, et al. (författare)
  • Instrumental resolution as a function of scattering angle and wavelength as exemplified for the POWGEN instrument
  • 2017
  • Ingår i: Journal of Applied Crystallography. - 0021-8898. ; 50:3, s. 866-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The method of angular- and wavelength-dispersive (e.g. two-dimensional) Rietveld refinement is a new and emerging tool for the analysis of neutron diffraction data measured at time-of-flight instruments with large area detectors. Following the approach for one-dimensional refinements (using either scattering angle or time of flight), the first step at each beam time cycle is the calibration of the instrument including the determination of instrumental contributions to the peak shape variation to be expected for diffraction patterns measured by the users. The aim of this work is to provide the users with calibration files and - for the later Rietveld refinement of the measured data - with an instrumental resolution file (IRF). This article will elaborate on the necessary steps to generate such an IRF for the angular- and wavelength-dispersive case, exemplified for the POWGEN instrument. A dataset measured on a standard diamond sample is used to extract the profile function in the two-dimensional case. It is found that the variation of reflection width with 2gθ and λ can be expressed by the standard equation used for evaluating the instrumental resolution, which yields a substantially more fundamental approach to the parameterization of the instrumental contribution to the peak shape. Geometrical considerations of the POWGEN instrument and sample effects lead to values for Δgθ, Δt and ΔL that yield a very good match to the extracted FWHM values. In a final step the refinement results are compared with the one-dimensional, i.e. diffraction-focused, case.A fundamental description of the instrument resolution file is elaborated for the angular- and wavelength-dispersive cases of Rietveld refinement, exemplified for the POWGEN instrument. It is shown how to refine the necessary profile function parameters from a dataset measured on a diamond reference sample. The analysis is performed in a two-dimensional refinement space based on the convenient variables d and d?.
  •  
3.
  • Lee, Wai Tung, et al. (författare)
  • Polarisation Development at the European Spallation Source
  • 2023
  • Ingår i: EPJ Web of Conferences. - 2100-014X. ; 286, s. 03004-03004
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the ever-increasing user demand, eleven of the fifteen European Spallation Source (ESS) instruments under construction aim to offer polarised neutrons for user experiments. They include an imaging instrument, a SANS instruments, two reflectometers, three diffractometers, and four spectrometers. In conjunction with in-kind contributions and instrumentation grants, the ESS Polarisation Project will support the incorporation of polarisation analysis on eight of the eleven instruments. The project aims to deliver polarised neutrons for first-science experiments as instruments enter operation. Different polariser and polarisation analyser techniques will be available to accommodate the specifics of experiments on a given instrument. Polarised 3He neutron spin filter using either Metastable Optical Pumping (MEOP) or Spin-Exchange Optical Pumping (SEOP) techniques will provide shared-use equipment among many instruments, with SEOP’s main application being in situ beam-polarisation. Several instruments will also use polarising-supermirror devices. To provide wide-bandwidth spin-flipping capability to the time-of-flight instruments, Adiabatic Fast Passage (AFP) neutron spin flippers, also known as gradient-field radiofrequency spin flippers will be the main method of choice. Devices based on the same AFP principle will also be used to flip 3He nuclear spins. We are constructing our first 3He polariser setup, including field coils to produce highly uniform magnetic field. Monte Carlo simulations are being done for the supermirror polarisers. To ensure science-focused development, we are working with university partners in doing scientific experiments with polarised neutrons. These are some of the activities developing polarisation analysis for ESS instruments in our project.
  •  
4.
  • Reim, J. D., et al. (författare)
  • Structural invariance upon antiferromagnetic ordering in geometrically frustrated swedenborgite, CaBaCo2Fe2O7
  • 2014
  • Ingår i: Journal of Applied Crystallography. - 1600-5767. ; 47, s. 2038-2047
  • Tidskriftsartikel (refereegranskat)abstract
    • Centimetre-sized single crystals of high-quality CaBaCo2Fe2O7 were synthesized by the optical floating zone technique. The metal-to-metal stoichiometry and oxygen content were confirmed by spectroscopy and thermal reduction experiments. The hexagonal symmetry P6(3)mc (No. 186) well describes the powder X-ray and neutron diffraction as well as single-crystal neutron diffraction at all measured temperatures. This symmetry is also consistent with optical second harmonic generation data obtained between 10 and 295 K. However, a satisfactory structure description from single-crystal neutron diffraction data needs an oxygen split position. Specific heat, magnetic susceptibility and powder neutron diffraction data indicate a magnetic phase transition at T-N = 159 K to an antiferromagnetic ground state, but with a persisting hexagonal symmetry and intrinsic geometric frustration.
  •  
5.
  • Sergueev, I., et al. (författare)
  • Effect of pressure, temperature, fluorine doping, and rare earth elements on the phonon density of states of LFeAsO studied by nuclear inelastic scattering
  • 2013
  • Ingår i: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 87:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We have performed systematic studies of the lattice dynamics in LFeAsO (L = La, Ce, Pr, Nd, Sm) in the parent and in the similar to 10% F-doped compounds as a function of pressure and temperature. We have found that the modifications in the partial Fe density of phonon states are mainly governed by the Fe-As bond length. The change of this bond length explains the change of the Fe density of phonon states above 25 meV. We further observe anomalies in the behavior of the phonon mode near 16 meV. In the parent phase, this mode softens anomalously upon cooling through the structural phase transition. Upon F doping, this mode hardens indicating a strong electron-phonon coupling. This suggests that the corresponding phonons play an important role in the competition between superconductivity and magnetism in these materials. DOI: 10.1103/PhysRevB.87.064302
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy