SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schymanski Emma L) "

Search: WFRF:(Schymanski Emma L)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mohammed Taha, Hiba, et al. (author)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • In: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Journal article (peer-reviewed)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
2.
  • Martens, Marvin, et al. (author)
  • ELIXIR and Toxicology : a community in development
  • 2021
  • In: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1129-1129
  • Journal article (peer-reviewed)abstract
    • Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.  
  •  
3.
  • Bataineh, Mahmoud, et al. (author)
  • Recent analytical methods for risk assessment of emerging contaminants in ecosystems
  • 2021
  • In: Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering. - : Elsevier. - 9780128095829 ; , s. 739-778
  • Book chapter (peer-reviewed)abstract
    • The analysis of emerging contaminants (ECs) remains a dynamic and challenging field because this involves analyzing chemicals with widely varying properties in a large variety of environmental matrices. Usually, concentration levels of ECs are particularly low, such that sensitive and selective analytical methods are required for their analysis. This chapter focuses on five classes of ECs (pharmaceuticals and personal care products, disinfection by-products, perfluorinated compounds, polybrominated diphenyl ethers, and benzotriazoles and dioxane [B and D]) in terms of their occurrence and level of detection. It also highlights the rule of regulatory agencies on the EC detection limit. Sampling techniques used to detect ECs in different environmental matrices are discussed, such as (1) water grab samples from inland and offshore; (2) large-volume solid-phase extraction for water samples; (3) passive samplers (Polar Organic Chemical Integrative Sampler, Chemcatcher, Altesil SR sheet, and semipermeable membrane devices); (4) sediment grab samples (Van Veen and gravity-free fall corer); (5) biota grab samples with different trophic levels (sediment microorganisms, mussels, fish, and mammals; and (6) air passive samplers (inland and/or offshore). In addition, the latest progress is reviewed in sample preparation, extraction, and cleanup.
  •  
4.
  • Deutsch, Eric W., et al. (author)
  • Expanding the Use of Spectral Libraries in Proteomics
  • 2018
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:12, s. 4051-4060
  • Journal article (peer-reviewed)abstract
    • The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on ABSTRACT: The 2017 Dagstuhl Seminar on Computational the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.
  •  
5.
  • Dulio, Valeria, et al. (author)
  • Beyond target chemicals : updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data
  • 2024
  • In: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 36:1
  • Journal article (peer-reviewed)abstract
    • Background: Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.Results: As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.Conclusions: This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools. Graphical Abstract: (Figure presented.)
  •  
6.
  • Dulio, Valeria, et al. (author)
  • The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC) : let’s cooperate!
  • 2020
  • In: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 32:1
  • Journal article (peer-reviewed)abstract
    • The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
  •  
7.
  • Gallampois, Christine M. J., et al. (author)
  • Integrated biological-chemical approach for the isolation and selection of polyaromatic mutagens in surface waters
  • 2013
  • In: Analytical and Bioanalytical Chemistry. - : Springer Berlin/Heidelberg. - 1618-2642 .- 1618-2650. ; 405:28, s. 9101-9112
  • Journal article (peer-reviewed)abstract
    • Many environmental mutagens, including polyaromatic compounds are present in surface waters, often in complex mixtures and at low concentrations. The present study provides and applies a novel, integrated approach to isolate polyaromatic mutagens in river water using a sample from the River Elbe. The sample was taken downstream of industrial discharges using blue rayon (BR) as a passive sampler that selectively adsorbs polyaromatic compounds and was subjected to effect-directed fractionation in order to characterise the compounds causing the detected effect(s). The procedure relies on three complementary fractionation steps, the Ames fluctuation assay with strains TA98, YG1024 and YG1041 with and without S9 activation and analytical screening. Several mutagenic fractions were isolated by combining mutagenicity testing with fractionation. The enhanced mutagenicity in the nitroreductase and/or O-acetyltransferase overexpressing strains YG1024 and YG1041 strains suggested amino- and/or nitro-compounds causing mutagenicity in several fractions. Analytical screening of mutagenic fractions with LC-HRMS/MS provided a list of molecular formulas typically containing one to ten nitrogen and at least two oxygen atoms supporting the presence of amino and nitro-compounds in the mutagenic fractions.
  •  
8.
  • Hollender, Juliane, et al. (author)
  • NORMAN guidance on suspect and non-target screening in environmental monitoring
  • 2023
  • In: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 35:1
  • Research review (peer-reviewed)abstract
    • Increasing production and use of chemicals and awareness of their impact on ecosystems and humans has led to large interest for broadening the knowledge on the chemical status of the environment and human health by suspect and non-target screening (NTS). To facilitate effective implementation of NTS in scientific, commercial and governmental laboratories, as well as acceptance by managers, regulators and risk assessors, more harmonisation in NTS is required. To address this, NORMAN Association members involved in NTS activities have prepared this guidance document, based on the current state of knowledge. The document is intended to provide guidance on performing high quality NTS studies and data interpretation while increasing awareness of the promise but also pitfalls and challenges associated with these techniques. Guidance is provided for all steps; from sampling and sample preparation to analysis by chromatography (liquid and gas-LC and GC) coupled via various ionisation techniques to high-resolution tandem mass spectrometry (HRMS/MS), through to data evaluation and reporting in the context of NTS. Although most experience within the NORMAN network still involves water analysis of polar compounds using LC-HRMS/MS, other matrices (sediment, soil, biota, dust, air) and instrumentation (GC, ion mobility) are covered, reflecting the rapid development and extension of the field. Due to the ongoing developments, the different questions addressed with NTS and manifold techniques in use, NORMAN members feel that no standard operation process can be provided at this stage. However, appropriate analytical methods, data processing techniques and databases commonly compiled in NTS workflows are introduced, their limitations are discussed and recommendations for different cases are provided. Proper quality assurance, quantification without reference standards and reporting results with clear confidence of identification assignment complete the guidance together with a glossary of definitions. The NORMAN community greatly supports the sharing of experiences and data via open science and hopes that this guideline supports this effort.
  •  
9.
  • Schymanski, Emma L, et al. (author)
  • Consensus Structure Elucidation Combining GC/EI-MS, Structure Generation, and Calculated Properties
  • 2012
  • In: Analytical Chemistry. - : American Chemical Society. - 0003-2700 .- 1520-6882. ; 84:7, s. 3287-3295
  • Journal article (peer-reviewed)abstract
    • This article explores consensus structure elucidation on the basis of GC/EI-MS, structure generation, and calculated properties for unknown compounds. Candidate structures were generated using the molecular formula and substructure information obtained from GC/EI-MS spectra. Calculated properties were then used to score candidates according to a consensus approach, rather than altering or exclusion. Two mass spectral match calculations (MOLGEN-MS and MetFrag), retention behavior (Lee retention index/boiling point correlation, NIST Kovats retention index), octanol water partitioning behavior (log K-ow), and finally steric energy calculations were used to select candidates. A simple consensus scoring function was developed and tested on two unknown spectra detected in a mutagenic subfraction of a water sample from the Elbe River using GC/EI-MS. The top candidates proposed using the consensus scoring technique were purchased and confirmed analytically using GC/EI-MS and LC/MS/MS. Although the compounds identified were not responsible for the sample mutagenicity, the structure-generation-based identification for GC/EI-MS using calculated properties and consensus scoring was demonstrated to be applicable to real-world unknowns and suggests that the development of a similar strategy for multidimensional high-resolution MS could improve the outcomes of environmental and metabolomics studies.
  •  
10.
  • Schymanski, Emma L, et al. (author)
  • Non-target screening with high-resolution mass spectrometry : critical review using a collaborative trial on water analysis
  • 2015
  • In: Analytical and Bioanalytical Chemistry. - : Springer Berlin/Heidelberg. - 1618-2642 .- 1618-2650. ; 407:21, s. 6237-6255
  • Research review (peer-reviewed)abstract
    • In this article, a dataset from a collaborative non-target screening trial organised by the NORMAN Association is used to review the state-of-the-art and discuss future perspectives of non-target screening using high-resolution mass spectrometry in water analysis. A total of 18 institutes from 12 European countries analysed an extract of the same water sample collected from the River Danube with either one or both of liquid and gas chromatography coupled with mass spectrometry detection. This article focuses mainly on the use of high resolution screening techniques with target, suspect, and non-target workflows to identify substances in environmental samples. Specific examples are given to emphasise major challenges including isobaric and co-eluting substances, dependence on target and suspect lists, formula assignment, the use of retention information, and the confidence of identification. Approaches and methods applicable to unit resolution data are also discussed. Although most substances were identified using high resolution data with target and suspect-screening approaches, some participants proposed tentative non-target identifications. This comprehensive dataset revealed that non-target analytical techniques are already substantially harmonised between the participants, but the data processing remains time-consuming. Although the objective of a "fully-automated identification workflow" remains elusive in the short term, important steps in this direction have been taken, exemplified by the growing popularity of suspect screening approaches. Major recommendations to improve non-target screening include better integration and connection of desired features into software packages, the exchange of target and suspect lists, and the contribution of more spectra from standard substances into (openly accessible) databases.
  •  
11.
  • Sha, Bo, et al. (author)
  • Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs)
  • 2019
  • In: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:11, s. 1835-1851
  • Journal article (peer-reviewed)abstract
    • Per- and polyfluoroalkyl substances (PFASs) are a large and diverse class of chemicals of great interest due to their wide commercial applicability, as well as increasing public concern regarding their adverse impacts. A common terminology for PFASs was recommended in 2011, including broad categorization and detailed naming for many PFASs with rather simple molecular structures. Recent advancements in chemical analysis have enabled identification of a wide variety of PFASs that are not covered by this common terminology. The resulting inconsistency in categorizing and naming of PFASs is preventing efficient assimilation of reported information. This article explores how a combination of expert knowledge and cheminformatics approaches could help address this challenge in a systematic manner. First, the splitPFAS approach was developed to systematically subdivide PFASs (for eventual categorization) following a CnF2n+1-X-R pattern into their various parts, with a particular focus on 4 PFAS categories where X is CO, SO2, CH2 and CH2CH2. Then, the open, ontology-based ClassyFire approach was tested for potential applicability to categorizing and naming PFASs using five scenarios of original and simplified structures based on the splitPFAS output. This workflow was applied to a set of 770 PFASs from the latest OECD PFAS list. While splitPFAS categorized PFASs as intended, the ClassyFire results were mixed. These results reveal that open cheminformatics approaches have the potential to assist in categorizing PFASs in a consistent manner, while much development is needed for future systematic naming of PFASs. The splitPFAS tool and related code are publicly available, and include options to extend this proof-of-concept to encompass further PFASs in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11
Type of publication
journal article (8)
research review (2)
book chapter (1)
Type of content
peer-reviewed (11)
Author/Editor
Schymanski, Emma L. (11)
Schulze, Tobias (7)
Slobodnik, Jaroslav (6)
Krauss, Martin (5)
Hollender, Juliane (5)
Rostkowski, Pawel (5)
show more...
Alygizakis, Nikiforo ... (4)
Thomaidis, Nikolaos ... (4)
Haglund, Peter (4)
Brack, Werner (4)
Aalizadeh, Reza (4)
Ahrens, Lutz (3)
Neumann, Steffen (3)
Čirka, Ľuboš (3)
Salek, Reza M (3)
Dulio, Valeria (3)
Vorkamp, Katrin (3)
Koschorreck, Jan (3)
Samanipour, Saer (3)
Gago-Ferrero, Pablo (3)
Togola, Anne (3)
Martin, Jonathan W. (2)
Schulz, Wolfgang (2)
Ng, Kelsey (2)
Deviller, Geneviève (2)
Hollert, Henner (2)
Bataineh, Mahmoud (2)
Hernandez, Felix (2)
Lamoree, Marja (2)
Letzel, Thomas (2)
Wang, Zhanyun (2)
Lopez de Alda, Miren (2)
O'Toole, Simon (2)
Sengl, Manfred (2)
von der Ohe, Peter C ... (2)
Celma, Alberto (2)
Derksen, Anja (2)
Fischer, Stellan (2)
Fu, Qiuguo (2)
Junghans, Marion (2)
Kools, Stefan A. E. (2)
Lopez, Benjamin (2)
Miège, Cécile (2)
Sims, Kerry (2)
Thomaidis, Nikolaos (2)
Williams, Antony J. (2)
Bijlsma, Lubertus (2)
Meijer, Jeroen (2)
Singh, Randolph R. (2)
Oberacher, Herbert (2)
show less...
University
Umeå University (6)
Stockholm University (4)
Swedish University of Agricultural Sciences (2)
Royal Institute of Technology (1)
Uppsala University (1)
Luleå University of Technology (1)
show more...
Örebro University (1)
Linköping University (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (11)
Research subject (UKÄ/SCB)
Natural sciences (9)
Medical and Health Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view