SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scolnic Dan) "

Sökning: WFRF:(Scolnic Dan)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianco, Federica B., et al. (författare)
  • Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time : A Pioneering Process of Community-focused Experimental Design
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey's massive data throughput will be transformational for many other astrophysics domains and Rubin's data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.
  •  
2.
  • Brout, Dillon, et al. (författare)
  • The Pantheon+ analysis : cosmological constraints
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find ΩM = 0.334 ± 0.018 from SNe Ia alone. For a flat w0CDM model, we measure w0 = −0.90 ± 0.14 from SNe Ia alone, H0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w0 = -0.978-+0.0310.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w0waCDM universe, and measure wa = -0.1-+2.00.9 from Pantheon+ SNe Ia alone, H0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and wa = -0.65-+0.320.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
  •  
3.
  • Brout, Dillon, et al. (författare)
  • The Pantheon+ analysis : supercal-fragilistic cross calibration, retrained SALT2 light-curve model, and calibration systematic uncertainty
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a recalibration of the photometric systems in the Pantheon+ sample of Type Ia supernovae (SNe Ia) including those in the SH0ES distance-ladder measurement of H0. We utilize the large and uniform sky coverage of the public Pan-STARRS stellar photometry catalog to cross calibrate against tertiary standards released by individual SN Ia surveys. The most significant updates over the “SuperCal” cross calibration used for the previous Pantheon and SH0ES analyses are: (1) expansion of the number of photometric systems (now 25) and filters (now 105), (2) solving for all filter offsets in all systems simultaneously to produce a calibration uncertainty covariance matrix for cosmological-model constraints, and (3) accounting for the change in the fundamental flux calibration of the Hubble Space Telescope CALSPEC standards from previous versions on the order of 1.5% over a Δλ of 4000 Å. We retrain the SALT2 model and find that our new model coupled with the new calibration of the light curves themselves causes a net distance modulus change (dμ/dz) of 0.04 mag over the redshift range 0 < z < 1. We introduce a new formalism to determine the systematic impact on cosmological inference by propagating the covariance in the fitted calibration offsets through retraining simultaneously with light-curve fitting and find a total calibration uncertainty impact of σw = 0.013; roughly half the size of the sample statistical uncertainty. Similarly, we find the systematic SN calibration contribution to the SH0ES H0 uncertainty is less than 0.2 km s−1 Mpc−1, suggesting that SN Ia calibration cannot resolve the current level of the “Hubble Tension.”
  •  
4.
  • Feeney, Stephen M., et al. (författare)
  • Prospects for Resolving the Hubble Constant Tension with Standard Sirens
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hubble constant (H-0) estimated from the local Cepheid-supernova distance ladder is in 3-sigma tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension represents newphysics or systematic effects is the subject of intense debate. Here, we investigate how new, independent H-0 estimates can arbitrate this tension, assessing whether the measurements are consistent with being derived from the same model using the posterior predictive distribution (PPD). We show that, with existing data, the inverse distance ladder formed from BOSS baryon acoustic oscillation measurements and the Pantheon supernova sample yields an H-0 posterior near identical to the Planck CMB measurement. The observed local distance ladder value is a very unlikely draw from the resulting PPD. Turning to the future, we find that a sample of similar to 50 binary neutron star standard sirens (detectable within the next decade) will be able to adjudicate between the local and CMB estimates.
  •  
5.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The classification of supernovae (SNe) and its impact on our understanding of explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification-connecting SN light curves back to their spectroscopically defined classes. Here, we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.
  •  
6.
  • Lochner, Michelle, et al. (författare)
  • The Impact of Observing Strategy on Cosmological Constraints with LSST
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation-defining Vera C. Rubin Observatory will make state-of-the-art measurements of both the static and transient universe through its Legacy Survey for Space and Time (LSST). With such capabilities, it is immensely challenging to optimize the LSST observing strategy across the survey's wide range of science drivers. Many aspects of the LSST observing strategy relevant to the LSST Dark Energy Science Collaboration, such as survey footprint definition, single-visit exposure time, and the cadence of repeat visits in different filters, are yet to be finalized. Here, we present metrics used to assess the impact of observing strategy on the cosmological probes considered most sensitive to survey design; these are large-scale structure, weak lensing, type Ia supernovae, kilonovae, and strong lens systems (as well as photometric redshifts, which enable many of these probes). We evaluate these metrics for over 100 different simulated potential survey designs. Our results show that multiple observing strategy decisions can profoundly impact cosmological constraints with LSST; these include adjusting the survey footprint, ensuring repeat nightly visits are taken in different filters, and enforcing regular cadence. We provide public code for our metrics, which makes them readily available for evaluating further modifications to the survey design. We conclude with a set of recommendations and highlight observing strategy factors that require further research.
  •  
7.
  • Murakami, Yukei S., et al. (författare)
  • Leveraging SN Ia spectroscopic similarity to improve the measurement of H0
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - 1475-7516. ; 2023:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest spectroscopic differences explain a fraction of the variation in Type Ia supernova (SN Ia) luminosities after light-curve/color standardization. In this work, (i) we empirically characterize the variations of standardized SN Ia luminosities, and (ii) we use a spectroscopically inferred parameter, SIP, to improve the precision of SNe Ia along the distance ladder and the determination of the Hubble constant (H0). First, we show that thePantheon+ covariance model modestly overestimates the uncertainty of standardized magnitudes by ∼ 7%, in the parameter space used by the SH0ES Team to measure H0; accounting for this alone yields H0 = 73.01 ± 0.92 km s-1 Mpc-1. Furthermore, accounting for spectroscopic similarity between SNe Ia on the distance ladder reduces their relative scatter to ∼ 0.12 mag per object (compared to ∼ 0.14 mag previously). Combining these two findings in the model of SN covariance, we find an overall 14% reduction (to ± 0.85 km s-1 Mpc-1) of the uncertainty in the Hubble constant and a modest increase in its value. Including a budget for systematic uncertainties itemized by Riess et al. (2022a), we report an updated local Hubble constant with ∼ 1.2% uncertainty, H0 = 73.29 ± 0.90 km s-1 Mpc-1. We conclude that spectroscopic differences among photometrically standardized SNe Ia do not explain the "Hubble tension". Rather, accounting for such differences increases its significance, as the discrepancy against ΛCDM calibrated by the Planck 2018 measurement rises to 5.7σ.
  •  
8.
  • Scolnic, Dan, et al. (författare)
  • The Pantheon+ analysis : the full data set and light-curve release
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present 1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the Supernovae and H0 for the Equation of State of dark energy distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z < 0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of “SN siblings”—SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al., and the determination of H0 is discussed by Riess et al. These analyses will measure w with ∼3% precision and H0 with ∼1 km s−1 Mpc−1 precision.
  •  
9.
  • Villar, V. Ashley, et al. (författare)
  • SuperRAENN : A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated classification of supernovae (SNe) based on optical photometric light-curve information is essential in the upcoming era of wide-field time domain surveys, such as the Legacy Survey of Space and Time (LSST) conducted by the Rubin Observatory. Photometric classification can enable real-time identification of interesting events for extended multiwavelength follow-up, as well as archival population studies. Here we present the complete sample of 5243 SN-like light curves (in g(P1)r(P1)i(P1)z(P1)) from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). The PS1-MDS is similar to the planned LSST Wide-Fast-Deep survey in terms of cadence, filters, and depth, making this a useful training set for the community. Using this data set, we train a novel semisupervised machine learning algorithm to photometrically classify 2315 new SN-like light curves with host galaxy spectroscopic redshifts. Our algorithm consists of an RF supervised classification step and a novel unsupervised step in which we introduce a recurrent autoencoder neural network (RAENN). Our final pipeline, dubbed SuperRAENN, has an accuracy of 87% across five SN classes (Type Ia, Ibc, II, IIn, SLSN-I) and macro-averaged purity and completeness of 66% and 69%, respectively. We find the highest accuracy rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Our complete spectroscopically and photometrically classified samples break down into 62.0% Type Ia (1839 objects), 19.8% Type II (553 objects), 4.8% Type IIn (136 objects), 11.7% Type Ibc (291 objects), and 1.6% Type I SLSNe (54 objects).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy