SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scottez V.) "

Sökning: WFRF:(Scottez V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pezzotta, A., et al. (författare)
  • Euclid preparation XLI. Galaxy power spectrum modelling in real space
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H alpha galaxies leading to catalogues of millions of objects within a volume of about 58 h(-3) Gpc(3). Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, omega c) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion - which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution - can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k(max) = 0.45 h Mpc(-1), and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, omega c) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.
  •  
2.
  • Pöntinen, M., et al. (författare)
  • Euclid: Identification of asteroid streaks in simulated images using deep learning
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data, especially in the near-infrared wavelengths, for only a limited number of asteroids. This is a significant limitation considering the complex orbital structures of the asteroid populations. Up to 150 000 asteroids will be visible in the images of the upcoming ESA Euclid space telescope, and the instruments of Euclid will offer multiband visual to near-infrared photometry and slitless near-infrared spectra of these objects. Most of the asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the Streak Det software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25–0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures.
  •  
3.
  • Barnett, R., et al. (författare)
  • Euclid preparation V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide predictions of the yield of 7 < z < 9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Phi) with redshift, Phi proportional to 10(k(z-6)), k = 0:72, and a further steeper rate of decline, k = 0:92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we make use of an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to J(AB) similar to 23. Quasars at z > 8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7 < z < 8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z = 6. If the decline of the QLF accelerates beyond z = 6, with k = 0.92, Euclid should nevertheless find over 100 quasars with 7.0 < z < 7.5, and similar to 25 quasars beyond the current record of z = 7.5, including similar to 8 beyond z = 8.0. The first Euclid quasars at z > 7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7 < z < 8, M-1450 < 25, using 8m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at J(AB) similar to 23. The precision with which k can be determined over 7 < z < 8 depends on the value of k, but assuming k = 0.72 it can be measured to a 1 sigma uncertainty of 0.07.
  •  
4.
  • Ballardini, M., et al. (författare)
  • Euclid : The search for primordial features
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Primordial features, in particular oscillatory signals, imprinted in the primordial power spectrum of density perturbations represent a clear window of opportunity for detecting new physics at high-energy scales. Future spectroscopic and photometric measurements from the Euclid space mission will provide unique constraints on the primordial power spectrum, thanks to the redshift coverage and high-accuracy measurement of nonlinear scales, thus allowing us to investigate deviations from the standard power-law primordial power spectrum. We consider two models with primordial undamped oscillations superimposed on the matter power spectrum described by 1 + ?X sin (ωXΞX + 2 πϕX), one linearly spaced in k space with Ξlin ≡ k/k* where k* = 0.05 Mpc−1 and the other logarithmically spaced in k space with Ξlog ≡ ln(k/k*). We note that ?X is the amplitude of the primordial feature, ωX is the dimensionless frequency, and ϕX is the normalised phase, where X = {lin, log}. We provide forecasts from spectroscopic and photometric primary Euclid probes on the standard cosmological parameters Ωm, 0, Ωb, 0, h, ns, and σ8, and the primordial feature parameters ?X, ωX, and ϕX. We focus on the uncertainties of the primordial feature amplitude ?X and on the capability of Euclid to detect primordial features at a given frequency. We also study a nonlinear density reconstruction method in order to retrieve the oscillatory signals in the primordial power spectrum, which are damped on small scales in the late-time Universe due to cosmic structure formation. Finally, we also include the expected measurements from Euclid’s galaxy-clustering bispectrum and from observations of the cosmic microwave background (CMB). We forecast uncertainties in estimated values of the cosmological parameters with a Fisher matrix method applied to spectroscopic galaxy clustering (GCsp), weak lensing (WL), photometric galaxy clustering (GCph), the cross correlation (XC) between GCph and WL, the spectroscopic galaxy clustering bispectrum, the CMB temperature and E-mode polarisation, the temperature-polarisation cross correlation, and CMB weak lensing. We consider two sets of specifications for the Euclid probes (pessimistic and optimistic) and three different CMB experiment configurations, that is, Planck, Simons Observatory (SO), and CMB Stage-4 (CMB-S4). We find the following percentage relative errors in the feature amplitude with Euclid primary probes: for the linear (logarithmic) feature model, with a fiducial value of ?X = 0.01, ωX = 10, and ϕX = 0: 21% (22%) in the pessimistic settings and 18% (18%) in the optimistic settings at a 68.3% confidence level (CL) using GCsp+WL+GCph+XC. While the uncertainties on the feature amplitude are strongly dependent on the frequency value when single Euclid probes are considered, we find robust constraints on ?X from the combination of spectroscopic and photometric measurements over the frequency range of (1,  102.1). Due to the inclusion of numerical reconstruction, the GCsp bispectrum, SO-like CMB reduces the uncertainty on the primordial feature amplitude by 32%–48%, 50%–65%, and 15%–50%, respectively. Combining all the sources of information explored expected from Euclid in combination with the future SO-like CMB experiment, we forecast ?lin ≃ 0.010 ± 0.001 at a 68.3% CL and ?log ≃ 0.010 ± 0.001 for GCsp(PS rec + BS)+WL+GCph+XC+SO-like for both the optimistic and pessimistic settings over the frequency range (1,  102.1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy