SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scotti F.) "

Sökning: WFRF:(Scotti F.)

  • Resultat 1-50 av 63
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
3.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  • Mikhailov, V. V., et al. (författare)
  • Anisotropy analysis of positron data with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is carried out on board of satellite the Resurs DK1 since 2006 for precision study of cosmic ray antiparticles. The instrument is equipped with magnetic spectrometer, silicon-tungsten imaging electromagnetic calorimeter, neutron detector which give possibility to separate electron and positron over wide energy range up to hundreds GeVs and to measure their incoming direction with accuracy about 2 degree. For each detected particle a space arriving direction was reconstructed using trajectory inside the instrument and the satellite position on the orbit. Backtracking in geomagnetic field was done to obtain initial spatial distribution of particles outside of the Earth magnetosphere. This paper discuss a result of search a possible local sources by anisotropy analysis of positron data. 
  •  
5.
  • Mikhailov, V. V., et al. (författare)
  • Method of electrons and positrons separations by bremsstrahlung in the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • Imaging calorimeter of the PAMELA instrument on board the Resurs DK satellite has high spatial resolution and allows to measure separately electromagnetic showers from electrons and positrons and their bremsstahlung produced in ToF detectors of the instrument. Measuring events with two showers provides proton rejection coefficient more than 104 at energy between 0.5 and 3 GeV. Results of positrons fractions obtained by this method are in agreement with previously published data of the PAMELA experiment at low energy. It confirms in independent way strong positron modulation during period of negative polarity of the Sun magnetic field.
  •  
6.
  • Adriani, O., et al. (författare)
  • Antiprotons in primary cosmic radiation with PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The latest measurements of antiprotons spectrum and antiproton-to-proton ratio in primary cosmic rays with PAMELA experiment are presented. They are in good agreement with model of secondary production of antiprotons in Galaxy, but they do not completely rule other sources at the high-energies. 
  •  
7.
  • Adriani, O., et al. (författare)
  • Cosmic-Ray Positron Energy Spectrum Measured by PAMELA
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:8, s. 081102-
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24 500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.
  •  
8.
  • Adriani, O., et al. (författare)
  • Measurement of Boron and Carbon Fluxes in Cosmic Rays with the Pamela Experiment
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 791:2, s. 93-
  • Tidskriftsartikel (refereegranskat)abstract
    • The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.
  •  
9.
  • Adriani, O., et al. (författare)
  • MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 818:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic-ray hydrogen and helium (H-1, H-2, He-3, He-4) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes H-2 and He-3 in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.
  •  
10.
  • Adriani, O., et al. (författare)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
11.
  • Adriani, O., et al. (författare)
  • Reentrant albedo proton fluxes measured by the PAMELA experiment
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:5, s. 3728-3738
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a precise measurement of downward going albedo proton fluxes for kinetic energy above similar to 70 MeV performed by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and untrapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudotrapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high-energy albedo proton populations at low-Earth orbits.
  •  
12.
  •  
13.
  •  
14.
  • Bagnardi, V, et al. (författare)
  • Light alcohol drinking and cancer: a meta-analysis
  • 2013
  • Ingår i: Annals of oncology : official journal of the European Society for Medical Oncology. - : Elsevier BV. - 1569-8041. ; 24:2, s. 301-308
  • Tidskriftsartikel (refereegranskat)
  •  
15.
  • Boezio, M., et al. (författare)
  • Nine years of cosmic rays investigation by the PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA cosmic ray detector was launched on June 15th of 2006 on board the Russian Resurs-DK1 satellite and during nine years of continuous data-taking it has ob- served very interesting features in cosmic rays, namely in the fluxes of protons, helium and electrons. Its discoveries might change our basic vision of the mechanisms of pro- duction, acceleration and propagation of cosmic rays in the Galaxy. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have been setting strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) will also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) is also pursued. Furthermore, the instrument is still functional allowing a constant monitoring of the solar activity during its maximum and a detailed and prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA is also measur- ing the radiation environment around the Earth, and it detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.
  •  
16.
  • Boezio, M., et al. (författare)
  • The PAMELA experiment and antimatter in the universe
  • 2014
  • Ingår i: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 228:1-3, s. 101-109
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The primary scientific goal is the measurement of the antiproton and positron energy spectra. Antiparticles are a natural component of the cosmic radiation being produced in the interaction between cosmic rays and the interstellar matter. They have been shown to be extremely interesting for understanding the propagation mechanisms of cosmic rays. Furthermore, novel sources of primary cosmic-ray antiparticles of either astrophysical or exotic origin (e.g. annihilation of dark matter particles) can also be probed. In this paper we review the PAMELA antiparticle results and their significance for the field of astroparticle physics.
  •  
17.
  • Bruno, A., et al. (författare)
  • Geomagnetically trapped, albedo and solar energetic particles : Trajectory analysis and flux reconstruction with PAMELA
  • 2017
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 60:4, s. 788-795
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.
  •  
18.
  • Bruno, A., et al. (författare)
  • PAMELA's measurements of geomagnetic cutoff variations during solar energetic particle events
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • Data from the PAMELA satellite experiment were used to measure the geomagnetic cutoff for high-energy ( 80 MeV) protons during the solar particle events on 2006 December 13 and 14. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to single spacecraft orbits (about 94 minutes). Estimated cutoff values were cross-checked with those obtained by means of a trajectory tracing approach based on dynamical empirical modeling of the Earth's magnetosphere. We find significant variations in the cutoff latitude, with a maximum suppression of about 6 deg for 80 MeV protons during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were compared with the changes in the magnetosphere configuration, investigating the role of IMF, solar wind and geomagnetic (Kp, Dst and Sym-H indexes) variables and their correlation with PAMELA cutoff results.
  •  
19.
  • Bruno, A., et al. (författare)
  • PAMELA's measurements of geomagnetically trapped and albedo protons
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classified into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populations in near Earth orbits. The.
  •  
20.
  • Bruno, A., et al. (författare)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of science.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
21.
  • Carbone, R., et al. (författare)
  • Pamela observation of the 2012 may 17 gle event
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeV/n up to hundred GeV/n. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times. 
  •  
22.
  • Casolino, M., et al. (författare)
  • New upper limit on strange quark matter flux with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • In this work we present a new upper limit for anomalous charge / mass (Z/A) particles with PAMELA experiment. These particles would exhibit a low velocity in the Time-of-Flight system and an high rigidity in the tracker. The redundant nature of the PAMELA detectors make it particularly suited to search for these particles in a mass number (10 ≤ A ≤ 105), charge (1≤ Z ≤ 8) and rigidity (0.4 ≤ R ≤ 1200 GV) range complementary to those of ground-based experiments. 
  •  
23.
  • Di Felice, V., et al. (författare)
  • Solar modulation of galactic hydrogen and helium over the 23rd solar minimum with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA has been orbiting the Earth for more than six years, gathering data on solar, galactic and trapped cosmic rays during the time of the last solar minimum. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle and antiparticle identification over a wide energy range and with an unprecedented precision. The quasi-polar orbit of the instrument, with an inclination of 70 degrees, makes it possible to measure low energy particles starting from about 100 MeV/n. In this work we present the time and rigidity dependence of the galactic proton and helium fluxes over the first 4 years of operation during the A < 0 solar minimum of solar cycle 23. 
  •  
24.
  • Formato, V., et al. (författare)
  • Galactic boron and carbon fluxes measured by the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a satellite-borne apparatus that performs measurements of the cosmic radiation with a particular focus on antiparticles and light nuclei. The heart of experiment is a magnetic spectrometer to measure the particle rigidity and sign of charge. A Time-of-Flight system, a Silicon-Tungsten calorimeter, and a neutron detector allow particle identification and lepton/hadron discrimination. The apparatus is surrounded by a set of anticoincidence scintillation counters to reject multi-particle events. In this work we will present the Boron and Carbon fluxes measured by PAMELA from July 2006 to March 2008. Such data, and in particular the B/C flux ratio, can help the modelling of the galactic cosmic rays propagation. This can be a crucial point in predicting the astrophysical background of antimatter (positrons and antiprotons) in cosmic rays in the search for a dark matter signal. 
  •  
25.
  • Formato, V., et al. (författare)
  • Hydrogen and helium isotopes flux in cosmic rays with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon-Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The beta and rigidity information allow to identify isotopes for Z = 1 and Z = 2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the final PAMELA results on the H and He isotope fluxes measured during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio. 
  •  
26.
  • Formato, V., et al. (författare)
  • Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 273-275
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon-Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The velocity and rigidity information allow the identification of different isotopes for Z = 1 and Z = 2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the PAMELA results on the H and He isotope fluxes based on the data collected during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio.
  •  
27.
  •  
28.
  • Karelin, A. V., et al. (författare)
  • Measurement of electron-positron spectrum in high-energy cosmic rays in the PAMELA experiment
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • At present the existing data on the cosmic ray electron energy spectra in the high energy range are fragmented, and the situation is exacerbated by their small number. In the satellite PAMELA experiment measurements at high energies are carried out by the calorimeter. The experimental data accumulated for more than 8 years of measurements, with the information of the calorimeter, the neutron detector and the scintillation counters made it possible to obtain the total spectrum of high-energy electrons and positrons in energy range 0.3-3 TeV.
  •  
29.
  • Karelin, A. V., et al. (författare)
  • Measurement of the large-scale anisotropy of cosmic rays in the PAMELA experiment
  • 2015
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 101:5, s. 295-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale anisotropy or so-called sidereal-diurnal wave has been detected in the PAMELA satellite experiment in the time interval of 2006–2014. The magnitude of anisotropy has been measured simultaneously for the Southern and Northern Hemispheres in the equatorial coordinate system. The results confirm the data of ground-based experiments.
  •  
30.
  •  
31.
  • Koldobskiy, S. A., et al. (författare)
  • Deuteron spectrum measurements under radiation belt with PAMELA instrument
  • 2016
  • Ingår i: Nuclear and Particle Physics Proceedings. - : Elsevier. - 2405-6014. ; 273-275, s. 2345-2347
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the results of data analysis of the deuteron albedo radiation obtained in the PAMELA experiment are presented. PAMELA is an international space experiment carried out on board of the satellite Resurs DK-1. The high precision detectors allow to register and identify cosmic ray particles in a wide energy range. The albedo deuteron spectrum in the energy range 70 - 600 MeV/nucleon has been measured.
  •  
32.
  • Koldobskiy, S. A., et al. (författare)
  • Measurement of trapped and quasitrapped deuteron populations in PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The results of measurements of trapped and albedo cosmic ray deuteron fluxes obtained in the PAMELA experiment are presented in this work. The PAMELA is an international experiment aimed for measurements of cosmic ray particle fluxes in wide energy range. In particular, analysis of PAMELA data gives possibility to identify deuterons and to reconstruct deuteron spectra of different origin (galactic cosmic ray, re-entrant albedo and radiation belt particles). The first results of trajcectory reconstruction for trapped and albedo deuterons are presented in this work. This investigation was done by solving equations of particle motion in Earth's magnetic field by means of numerical integration methods.
  •  
33.
  • Koldobskiy, S. A., et al. (författare)
  • Study of deuteron spectra under radiation belt with PAMELA instrument
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the results of measurements of proton and deuteron fluxes of albedo radiation in the Earth vicinity, obtained in the PAMELA experiment. PAMELA is an international experiment meant to study cosmic rays. PAMELA is carried out on board the satellite Resurs-DK1. High-precision equipment of the experiment allows registration and identification of cosmic ray particles of different varieties in a wide energy range. The albedo deuteron spectrum and albedo deuteron-to-proton fluxes ratio in the energy range 70 - 600 MeV/nucleon at altitude of 350 - 600 km for different geomagnetic latitudes is presented.
  •  
34.
  • Koldobskiy, S., et al. (författare)
  • Measuring the albedo deuteron flux in the PAMELA satellite experiment
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 294-297
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of measuring albedo deuteron fluxes in the vicinity of the Earth are presented. The data were obtained in the PAMELA experiment conducted aboard the Resurs DK-1 artificial Earth satellite. High-precision detectors of the instrument setup allow us to identify albedo deuterons and measure their spectra in the energy interval from 70 to 600 MeV/nucleon at altitudes of 350–600 km for different geomagnetic latitudes.
  •  
35.
  • Malakhov, V. V., et al. (författare)
  • Time variations of proton flux in Earth inner radiation belt during 23/24 solar cycles based on the PAMELA and the ARINA data.
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA and the ARINA experiments are carried out on the board of satellite RESURS-DK1 since 2006 up to now. Main goal of the PAMELA instrument is measurements of high energy antiparticles in cosmic rays while the ARINA instrument is intended studying high energy charged particle bursts in the magnetosphere. Both of these experiments have a possibility to study trapped particles in the inner radiation belt. Complex of these two instruments covers proton energy range from 30 MeV up to trapping limit (E= similar to 2 GeV). Continuous measurements with the PAMELA and the ARINA spectrometers include falling and rising phases of 23/24 solar cycles and maximum of 24th one. In this report we present temporal profiles of proton flux in the inner zone of the radiation belt (1.11 < L < 1.18, 0.18 < B < 0.22G). Dependence of proton fluxes on a magnitude of the solar activity was studied for various phases of 23/24 solar cycles. At that it was shown that proton fluxes at the solar minimum are several times greater than at the solar maximum.
  •  
36.
  • Martucci, M., et al. (författare)
  • Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 158-161
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
  •  
37.
  • Martucci, M., et al. (författare)
  • Magnetospheric effects on high-energy solar particles during the 2012 May 17th event measured with the PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The great challenge in constraining scenarios for solar energetic particle (SEP) acceleration is due to the fact that the signatures of acceleration itself are heavily modified by transport within interplanetary space. During transport, SEPs are subject to pitch angle scattering by the turbulent magnetic field, adiabatic focusing, or reflecting magnetic structures. Ground Level Enhancements (GLEs) provide an ideal way to study acceleration with minimal transport. In this work, we present a unique high-energy SEP observation from PAMELA of the 2012 May 17 GLE and interpret the observed pitch angle distributions as a result of local scattering (1 AU) by the Earth's magnetosheath.
  •  
38.
  • Menn, W., et al. (författare)
  • Lithium and beryllium isotopes in the pamela-experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anti-coincidence system, a shower tail counter scintillator and a neutron detector. The scientific objectives addressed by the mission are the measurement of the antiprotons and positrons spectra in cosmic rays, the hunt for antinuclei as well as the determination of light nuclei fluxes from hydrogen to oxygen in a wide energy range and with very high statistics. In this paper the identification capability for lithium and beryllium isotopes for two different techniques are presented, combining the rigidity measurement from the magnetic spectrometer with the velocity information derived either with the time-of-flight or with multiple dE/dx measurements in the calorimeter. Preliminary results of the isotopic ratios will be presented.
  •  
39.
  • Menn, W., et al. (författare)
  • Lithium and Beryllium Isotopes with the PAMELA Experiment
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 862:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic ray (CR) lithium and beryllium (Li-6, Li-7, Be-7, Be-9, Be-10) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DKJ satellite on 2006 June 15. The rare lithium and beryllium isotopes in CRs are believed to originate mainly from the interaction of high-energy carbon, nitrogen, and oxygen nuclei with the interstellar medium (ISM), but also on "tertiary" interactions in the ISM (i.e., produced by further fragmentation of secondary beryllium and boron). In this paper, the isotopic ratios Li-7/Li-6 and Be-7/(Be-9 + Be-10), measured between 150 and 1100 MeV n(-1) using two different detector systems from 2006 July to 2014 September, will be presented.
  •  
40.
  • Menn, W., et al. (författare)
  • Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the pamela-experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The cosmic-ray hydrogen and helium (1H,2H,3He,4He) isotopic composition between 100 MeV/n and 1.4 GeV/n has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. The rare isotopes 2H and 3He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from July 2006 to December 2007.
  •  
41.
  • Merge, M., et al. (författare)
  • Multi-particle analysis of the december 13th 2006 forbush decrease with PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present PAMELA multi-particle observation of the Forbush decrease (FD) following the December 13th 2006 solar particle event. The FD is the sudden decrease of the galactic cosmic ray flux due to the transit of a Coronal Mass Ejection (CME). The satellite-borne experiment PAMELA on-board Resurs-DK1 satellite and consist of a magnetic spectrometer with time-of-flight and calorimeter detectors. PAMELA can study in real time with high precision the temporal and energetic evolution of several particle fluence during and after crossing of the magnetic cloud generated by the CME. The effect is stronger than what detected on ground with neutron monitor. With flux reduction can be as high as 30% decreasing at 1.5GV. No difference of the FD has been found for different particles proving that there is no charge sign dependence of FD for this event. 
  •  
42.
  • Mocchiutti, E., et al. (författare)
  • Cosmic–ray positron energy spectrum measured by PAMELA
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite borne experiment is designed to study cosmic rays with great accuracy in a wide energy range. One of PAMELA’s main goal is the study of the antimatter component of cosmic rays. The experiment, housed on board the Russian satellite Resurs–DK1, was launched on June 15th 2006 and it is still taking data. In this work we present the measurement of galactic positron energy spectrum in the energy range between 500 MeV and few hundred GeV. 
  •  
43.
  • Mori, N., et al. (författare)
  • PAMELA measurements of the boron and carbon spectra
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented.
  •  
44.
  • Mori, N., et al. (författare)
  • The PAMELA experiment and cosmic ray observations
  • 2015
  • Ingår i: NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS. - : Elsevier. - 2405-6014. ; , s. 242-244
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA space experiment is aimed at precise measurements of the charged light component of the cosmic ray spectrum in the energy range spanning from the sub-GeV region to the TeV region, with a particular focus on antimatter. The instrument consists of a magnetic spectrometer, an electromagnetic sampling calorimeter,a time-off-light system, an anticoincidence shield, a tail-catcher scintillator and a neutron detector. Launched in June 2006 and hosted on the Resurs-DK1 satellite, PAMELA has been taking data for more than eight years, providing scientific results with unprecedented statistics and a continuous monitoring of the sun activity and the heliosphere.
  •  
45.
  • Munini, R., et al. (författare)
  • Solar modulation of galactic cosmic ray electrons and positrons over the 23rd solar minimum with the PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The PAMELA experiment has measured the time variation of electron and positron spectrum at Earth in great detail, extending the measurement down to 70 MeV and 200 MeV respectively. The spectra have been evaluated with data collected from July 2006 to December 2009, i.e. during the A<0 solar minimum of solar cycle 23, over six-months intervals. These spectra provide important information for the study of CR propagation inside the heliosphere and the investigation of the charge-dependent solar modulation.
  •  
46.
  • Munini, R., et al. (författare)
  • Solar modulation of galactic cosmic rays electrons and positrons over the 23rd solar minimum with the pamela experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with an unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The satellite quasi-polar orbit, with an inclination of 70 degrees, allows particles to be measure down to 100 MeV/n. This makes the instrument suited for the investigation of phenomena related to galactic cosmic ray solar modulation in the inner heliosphere. Data for oppositely charged particles were collected from 2006 to 2009, during the A< 0 solar minimum of solar cycle 23. The time and rigidity dependence of galactic cosmic ray electron and positron fluxes were measured. These fluxes provide important information for the study of charge dependent solar modulation effects. 
  •  
47.
  • Munini, R., et al. (författare)
  • Solar modulation of GCR electrons over the 23rd solar minimum with PAMELA
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The PAMELA experiment has measured the electron spectrum at Earth in great detail, extending up to about 100 GeV and down to about 200 MeV. The galactic cosmic ray electron spectra for 2007 and 2009, i.e. measured during the A<0 solar minimum of solar cycle 23, are presented. These fluxes provide important information for the study of charge dependent solar modulation effects.
  •  
48.
  • Panico, B., et al. (författare)
  • Study on CRE arrival distributions with PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • From 2009, several experiments, like PAMELA, FERMI and AMS, have shown a rise in the fraction of positrons versus electrons+positrons. One of the most probable explanation is due to the presence of nearby sources, like SNRs or pulsars. PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is a ballooon-borne experiment and is collecting data since 15 June 2006. Its quasi-polar orbit permits to perform a survey in each direction of the sky. The study of the arrival distribution of cosmic ray electrons and positrons from different regions allows the exploration of different origins for the excess.
  •  
49.
  • Ricci, M., et al. (författare)
  • Study on 2012 march 7 solar particle event and forbush decrease with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astro-physics) space-borne experiment was launched on 15 June 2006 and has been continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. The on-board instrumentation is built around a permanent magnet with a silicon microstrip tracker, providing charge and track detection information. During solar maximum conditions of solar cycle 24, PAMELA has been providing key information about solar energetic particles (SEPs) and their influence at Earth. We discuss here the recent 2012 March 7 SEP event with a brief comment on the subsequent Forbush decrease, registered by PAMELA. This event was also observed by Fermi/LAT exhibiting unprecedented time-extended γ-ray emission (> 100 MeV) lasting nearly 20 hours. We compare the derived accelerated ion population at the Sun with the ion population measured in space by PAMELA and discuss the implications for particle acceleration. 
  •  
50.
  • Ricciarini, S. B., et al. (författare)
  • PAMELA mission : Heralding a new era in cosmic ray physics
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Konferensbidrag (refereegranskat)abstract
    • After seven years of data taking in space, the experiment PAMELA is showing very interesting features in cosmic rays, namely in the fluxes of protons, helium, electrons, that might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy. In addition, PAMELA measurements of cosmic antiproton and positron fluxes are setting strong constraints to the nature of Dark Matter. The continuous particle detection is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms. PAMELA is also measuring the radiation environment around the Earth, and has recently discovered an antiproton radiation belt.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 63

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy