SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sebelius Fredrik) "

Sökning: WFRF:(Sebelius Fredrik)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antfolk, Christian, et al. (författare)
  • A Tactile Display System for Hand Prostheses to Discriminate Pressure and Individual Finger Localization
  • 2010
  • Ingår i: Journal of Medical and Biological Engineering. - : Taiwanese Society of Biomedical Engineering. - 1609-0985. ; 30:6, s. 355-359
  • Tidskriftsartikel (refereegranskat)abstract
    • No current commercially available myoelectrically controlled prosthetic hands provide conscious sensory feedback to the user. A system aiming at relocation of sensory input from a prosthetic hand equipped with force sensors to the forearm skin of amputees, a tactile display, has been developed and constructed. The system consists of five piezoresistive force sensors or, alternatively, a prosthetic hand equipped with force sensors, five digital servomotors with a lever and a circular plastic disk pushing on the skin, control electronics based on an MSP430 microcontroller and a test application implemented in LabVIEW running on a PC. The tactile display system is intended to be integrated into the socket of a hand prosthesis and used as a conscious sensory feedback system for hand amputees using a myoelectrically controlled hand prosthesis. The system will provide continuous force feedback from sensors in the fingertips of each prosthetic finger and will likely improve the users' controllability and perception of the prosthetic hand. Here we report on tests made on "a five site" localization discrimination task and three pressure level discrimination tasks on the forearm of five healthy participants (non-amputees) using the LabView application to generate the stimulations. A mean five-finger discrimination accuracy of 86% and a mean three-level pressure discrimination accuracy of 93% were achieved, indicating the system to be a viable method of producing sensory feedback on the level of individual fingers.
  •  
2.
  • Antfolk, Christian, et al. (författare)
  • Artificial Redirection of Sensation From Prosthetic Fingers to the Phantom Hand Map on Transradial Amputees: Vibrotactile Versus Mechanotactile Sensory Feedback
  • 2013
  • Ingår i: IEEE Transactions on Neural Systems and Rehabilitation Engineering. - 1534-4320. ; 21:1, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • This work assesses the ability of transradial amputees to discriminate multi-site tactile stimuli in sensory discrimination tasks. It compares different sensory feedback modalities using an artificial hand prosthesis in: 1) a modality matched paradigm where pressure recorded on the five fingertips of the hand was fed back as pressure stimulation on five target points on the residual limb; and 2) a modality mismatched paradigm where the pressures were transformed into mechanical vibrations and fed back. Eight transradial amputees took part in the study and were divided in two groups based on the integrity of their phantom map; group A had a complete phantom map on the residual limb whereas group B had an incomplete or nonexisting map. The ability in localizing stimuli was compared with that of 10 healthy subjects using the vibration feedback and 11 healthy subjects using the pressure feedback (in a previous study), on their forearms, in similar experiments. Results demonstrate that pressure stimulation surpassed vibrotactile stimulation in multi-site sensory feedback discrimination. Furthermore, we demonstrate that subjects with a detailed phantom map had the best discrimination performance and even surpassed healthy participants for both feedback paradigms whereas group B had the worst performance overall. Finally, we show that placement of feedback devices on a complete phantom map improves multi-site sensory feedback discrimination, independently of the feedback modality.
  •  
3.
  • Antfolk, Christian, et al. (författare)
  • Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system
  • 2010
  • Ingår i: BioMedical Engineering Online. - 1475-925X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The users of today's commercial prosthetic hands are not given any conscious sensory feedback. To overcome this deficiency in prosthetic hands we have recently proposed a sensory feedback system utilising a "tactile display" on the remaining amputation residual limb acting as man-machine interface. Our system uses the recorded pressure in a hand prosthesis and feeds back this pressure onto the forearm skin. Here we describe the design and technical solution of the sensory feedback system aimed at hand prostheses for trans-radial/humeral amputees. Critical parameters for the sensory feedback system were investigated. Methods: A sensory feedback system consisting of five actuators, control electronics and a test application running on a computer has been designed and built. Firstly, we investigate which force levels were applied to the forearm skin of the user while operating the sensory feedback system. Secondly, we study if the proposed system could be used together with a myoelectric control system. The displacement of the skin caused by the sensory feedback system would generate artefacts in the recorded myoelectric signals. Accordingly, EMG recordings were performed and an analysis of the these are included. The sensory feedback system was also preliminarily evaluated in a laboratory setting on two healthy non-amputated test subjects with a computer generating the stimuli, with regards to spatial resolution and force discrimination. Results: We showed that the sensory feedback system generated approximately proportional force to the angle of control. The system can be used together with a myoelectric system as the artefacts, generated by the actuators, were easily removed using a simple filter. Furthermore, the application of the system on two test subjects showed that they were able to discriminate tactile sensation with regards to spatial resolution and level of force. Conclusions: The results of these initial experiments in non-amputees indicate that the proposed tactile display, in its simple form, can be used to relocate tactile input from an artificial hand to the forearm and that the system can coexist with a myoelectric control systems. The proposed system may be a valuable addition to users of myoelectric prosthesis providing conscious sensory feedback during manipulation of objects.
  •  
4.
  • Antfolk, Christian, et al. (författare)
  • Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin.
  • 2012
  • Ingår i: Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine. - : Medical Journals Sweden AB. - 1651-2081. ; 44:8, s. 702-707
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Lack of sensory feedback is a drawback in today's hand prostheses. We present here a non-invasive simple sensory feedback system, which provides the user of a prosthetic hand with sensory feedback on the arm stump. It is mediated by air in a closed loop system connecting silicone pads on the prosthetic hand with pads on the amputation stump. The silicone pads in a "tactile display" on the amputation stump expand when their corresponding sensor-bulb in the prosthesis is touched, evoking an experience of "real touch". Methods: Twelve trans-radial amputees and 20 healthy non-amputees participated in the study. We investigated the capacity of the system to mediate detection of touch, discrimination between different levels of pressure and, on the amputees also, the ability to locate touch. Results: The results showed a median touch threshold of 80 and 60 g in amputees and non-amputees, respectively, and 90% and 80% correct answers, respectively, in discrimination between 2 levels of pressure. The amputees located touch (3 sites) correctly in 96% of trials. Conclusion: This simple sensory feedback system has the potential to restore sensory feedback in hand amputees and thus it could be a useful tool to enhance prosthesis use.
  •  
5.
  • Antfolk, Christian, et al. (författare)
  • Sensory feedback in upper limb prosthetics.
  • 2013
  • Ingår i: Expert Review of Medical Devices. - : Informa UK Limited. - 1745-2422 .- 1743-4440. ; 10:1, s. 45-54
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.
  •  
6.
  • Antfolk, Christian, et al. (författare)
  • SmartHand tactile display: A new concept for providing sensory feedback in hand prostheses.
  • 2010
  • Ingår i: Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. - : Medical Journals Sweden AB. - 1651-2073. ; 44, s. 50-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract A major drawback with myoelectric prostheses is that they do not provide the user with sensory feedback. Using a new principle for sensory feedback, we did a series of experiments involving 11 healthy subjects. The skin on the volar aspect of the forearm was used as the target area for sensory input. Experiments included discrimination of site of stimuli and pressure levels at a single stimulation point. A tactile display based on digital servomotors with one actuating element for each of the five fingers was used as a stimulator on the forearm. The results show that the participants were able to discriminate between three fingers with an accuracy of 97%, between five fingers with an accuracy of 82%, and between five levels with an accuracy of 79%. The tactile display may prove a helpful tool in providing amputees with sensory feedback from a prosthetic hand by transferring tactile stimuli from the prosthetic hand to the skin at forearm level.
  •  
7.
  • Antfolk, Christian, et al. (författare)
  • Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers
  • 2013
  • Ingår i: Disability and Rehabilitation: Assistive Technology. - : Informa UK Limited. - 1748-3115 .- 1748-3107. ; 8:3, s. 249-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedPurpose:This study explores the possibilities of transferring peripheral tactile stimulations from an artificial hand to the forearm skin.Method:A tactile display applied to the forearm skin was used to transfer tactile input to the forearm from various locations on a hand displayed on a computer screen. Discernment of location, levels of pressure and a combination of the two in simulated functional grips was tested to quantify the participants' ability to accurately perceive the tactile stimulations presented. Ten participants (5 forearm amputees and 5 able-bodied volunteers) unfamiliar with the equipment participated in the three-stage experiments comprising a learning session with vision, a reinforced learning session without vision and a validation session without vision.Results:The location discernment accuracy was high in both groups (75.2% and 89.6% respectively). The capacity to differentiate between three different levels of pressure was also high (91.7% and 98.1% respectively in the two groups). Recognition of simulated grip was slightly more difficult with the groups scoring 58.7% and 68.0% respectively for accuracy in the validation session.Conclusions:This study demonstrates that it is possible, following a brief training period, to transfer tactile input from an artificial hand to the forearm skin. The level of accuracy was lower for the more complex task, simulated grip recognition, possibly because this represents a more complex task requiring higher order brain functions. These results could form the basis for developing sensory feedback in hand prostheses. [Box: see text].
  •  
8.
  • Antfolk, Christian, et al. (författare)
  • Using EMG for Real-time Prediction of Joint Angles to Control a Prosthetic Hand Equipped with a Sensory Feedback System
  • 2010
  • Ingår i: Journal of Medical and Biological Engineering. - : Taiwanese Society of Biomedical Engineering. - 1609-0985. ; 30:6, s. 399-405
  • Tidskriftsartikel (refereegranskat)abstract
    • All commercially available upper limb prosthesis controllers only allow the hand to be commanded in an open and close fashion without any sensory feedback to the user. Here the evaluation of a multi-degree of freedom hand controlled using a real-time EMG pattern recognition algorithm and incorporating a sensory feedback system is reported. The hand prosthesis, called SmartHand, was controlled in real-time by using 16 myoelectric signals from the residual limb of a 25-year old male transradial amputee in a two day long evaluation session. Initial training of the EMG pattern recognition algorithm was performed with a dataglove fitted to the contralateral hand recording joint angle positions of the fingers and mapping joint angles of the fingers to the EMG data. In the following evaluation sessions, the myoelectric signals were classified using local approximation and lazy learning, producing finger joint angle outputs and consequently controlling the prosthetic hand. Sensory information recorded from force sensors in the artificial hand was relayed to actuators, integrated in the socket of the prosthesis, continuously delivering force sensory feedback stimulations to the stump of the amputee. The participant was able to perform several dextrous movements as well as functional grip tasks after only two hours of training and increased his controllability during the two day session. In the final evaluation session a mean classification accuracy of 86% was achieved.
  •  
9.
  • Cipriani, Christian, et al. (författare)
  • A novel concept for a prosthetic hand with bidirectional non-invasive interface: a feasibility study
  • 2009
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 56:11, s. 2739-2743
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in Undetermined A conceptually novel prosthesis consisting of a mechatronic hand, an electromyographic classifier, and a tactile display has been developed and evaluated by addressing problems related to controllability in prosthetics: intention extraction, perception, and feeling of ownership. Experiments have been performed, and encouraging results for a young transradial amputee are reported.
  •  
10.
  • Cipriani, Christian, et al. (författare)
  • Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees
  • 2011
  • Ingår i: IEEE Transactions on Neural Systems and Rehabilitation Engineering. - 1534-4320. ; 19:3, s. 260-270
  • Tidskriftsartikel (refereegranskat)abstract
    • A real-time pattern recognition algorithm based on k-nearest neighbors and lazy learning was used to classify, voluntary electromyography (EMG) signals and to simultaneously control movements of a dexterous artificial hand. EMG signals were superficially recorded by eight pairs of electrodes from the stumps of five transradial amputees and forearms of five able-bodied participants and used online to control a robot hand. Seven finger movements (not involving the wrist) were investigated in this study. The first objective was to understand whether and to which extent it is possible to control continuously and in real-time, the finger postures of a prosthetic hand, using superficial EMG, and a practical classifier, also taking advantage of the direct visual feedback of the moving hand. The second objective was to calculate statistical differences in the performance between participants and groups, thereby assessing the general applicability of the proposed method. The average accuracy of the classifier was 79% for amputees and 89% for able-bodied participants. Statistical analysis of the data revealed a difference in control accuracy based on the aetiology of amputation, type of prostheses regularly used and also between able-bodied participants and amputees. These results are encouraging for the development of noninvasive EMG interfaces for the control of dexterous prostheses.
  •  
11.
  • Falk, Magnus, et al. (författare)
  • Self-​powered wireless carbohydrate​/oxygen sensitive biodevice based on radio signal transmission
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 9:10, s. e109104/1-e109104/9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here for the first time, we detail self-​contained (wireless and self-​powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-​sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and sep. sensing bioelectrodes, supplied with elec. energy from a combined multi-​enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate​/oxygen enzymic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-​contained biosensing device, employing enzyme-​modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor) and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 μA and 0.57 V, resp. to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen contg. buffer. In addn., a USB based receiver and computer software were employed for proof-​of concept tests of the developed biodevices. Operation of bench-​top prototypes was demonstrated in buffers contg. different concns. of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-​time as analyte concns. in buffers were changed, using only an enzymic fuel cell as a power supply.
  •  
12.
  • Johansen, Daniel, et al. (författare)
  • A comparative study of virtual hand prosthesis control using an inductive tongue control system
  • 2016
  • Ingår i: Assistive Technology. - : Informa UK Limited. - 1040-0435 .- 1949-3614. ; 28:1, s. 22-29
  • Tidskriftsartikel (refereegranskat)abstract
    • This study compares the time required to activate a grasp or function of a hand prosthesis when using an electromyogram (EMG) based control scheme and when using a control scheme combining EMG and control signals from an inductive tongue control system (ITCS). Using a cross-over study design, 10 able-bodied subjects used a computer model of a hand and completed simulated grasping exercises. The time required to activate grasps was recorded and analyzed for both control schemes. End session mean activation times (ATs; seconds) for the EMG control scheme grasps 1 -5 were 0.80, 1.51, 1.95, 2.93, and 3.42; for the ITCS control scheme grasps 1 5 they were 1.19, 1.89, 1.75, 2.26, and 1.80. Mean AT for grasps 1 and 2 was statistically significant in favor of the EMG control scheme (p = 0.030; p = 0.004). For grasp 3 no statistical significance occurred, and for grasps 4 and 5 there was a statistical significance in favour of the ITCS control scheme (p = 0.048; p = 0.004). Based on the amount of training and the achieved level of performance, it is concluded that the proposed ITCS control scheme can be used as a means of enhancing prosthesis control.
  •  
13.
  • Kanitz, Gunter, et al. (författare)
  • Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm.
  • 2011
  • Ingår i: [Host publication title missing]. - 1557-170X. - 9781424441211 ; , s. 1608-1611
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present surface electromyographic (EMG) data collected from 16 channels on five unimpaired subjects and one transradial amputee performing 12 individual finger movements and a rest class. EMG were processed using a traditional Time Domain feature-set and classifiers: a Linear Discriminant Analysis (LDA) a k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). Using continuous datasets we show that it is possible to achieve an accuracy up to 80% across subjects. Thereafter possibilities to reduce the numbers of channels physically required, as well as the number of features have been investigated by means of a developed Genetic Algorithm (GA) that included a bonus system to reward eliminated features and channels. The classification was performed firstly on the full datasets and in later runs using the GA. The GA demonstrated high redundancy in the recorded 16 channel data as well as the insignificance of certain features. Although the GA optimization yielded to reduce 8 to 11 channels depending on the subject, such reduction had little to no effect on the classification accuracies.
  •  
14.
  • Rosén, Birgitta, et al. (författare)
  • Referral of sensation to an advanced humanoid robotic hand prosthesis.
  • 2009
  • Ingår i: Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. - : Informa UK Limited. - 1651-2073 .- 0284-4311. ; 43:5, s. 260-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Hand prostheses that are currently available on the market are used by amputees to only a limited extent, partly because of lack of sensory feedback from the artificial hand. We report a pilot study that showed how amputees can experience a robot-like advanced hand prosthesis as part of their own body. We induced a perceptual illusion by which touch applied to the stump of the arm was experienced from the artificial hand. This illusion was elicited by applying synchronous tactile stimulation to the hidden amputation stump and the robotic hand prosthesis in full view. In five people who had had upper limb amputations this stimulation caused referral touch sensation from the stump to the artificial hand, and the prosthesis was experienced more like a real hand. We also showed that this illusion can work when the amputee controls the movements of the artificial hand by recordings of the arm muscle activity with electromyograms. These observations indicate that the previously described "rubber hand illusion" is also valid for an advanced hand prosthesis, even when it has a robotic-like appearance.
  •  
15.
  • Sebelius, Fredrik, et al. (författare)
  • Classification of motor commands using a modified self-organising feature map.
  • 2005
  • Ingår i: Medical Engineering & Physics. - : Elsevier BV. - 1873-4030 .- 1350-4533. ; 27:5, s. 403-413
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a control system for an advanced prosthesis is proposed and has been investigated in two different biological systems: (1) the spinal withdrawal reflex system of a rat and (2) voluntary movements in two human males: one normal subject and one subject with a traumatic hand amputation. The small-animal system was used as a model system to test different processing methods for the prosthetic control system. The best methods were then validated in the human set-up. The recorded EMGs were classified using different ANN algorithms, and it was found that a modified self-organising feature map (SOFM) composed of a combination of a Kohonen network and the conscience mechanism algorithm (KNC) was superior in performance to the reference networks (e.g. multi-layer perceptrons) as regards training time, low memory consumption, and simplicity in finding optimal training parameters and architecture. The KNC network classified both experimental set-ups with high accuracy, including five movements for the animal set-up and seven for the human set-up.
  •  
16.
  • Sebelius, Fredrik (författare)
  • Myoelectric Control for Hand Prostheses
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An investigation of improvements of myoelectric prostheses has been undertaken. The primary aims of this thesis were (1) to generate an accurate prediction of as many hand movement as possible, (2) to produce a training setup for subjects allowing intuitive and instant control over multiple movements, and (3) to reduce the training cycle for the control system to a maximum of a couple of minutes to enable optimizations, e.g., electrode placement. A median of six movements has been predicted with a 100% accuracy. At the initial predictions, a new set-up for training amputees using a data glove has been proposed, and training of less than 30 seconds of off-line learning, as well as direct online learning, has been conducted. Thus, the initial goals were fulfilled. Further, an online learning system has proved to further increase the accuracy and the number of movements performed while the response time for prediction decreased to 50–100 ms.
  •  
17.
  •  
18.
  • Sebelius, Fredrik, et al. (författare)
  • Real-time control of a virtual hand
  • 2005
  • Ingår i: Technology and Disability. - 1878-643X. ; 17:3, s. 131-141
  • Tidskriftsartikel (refereegranskat)abstract
    • A myoelectric control system for prostheses was developed and evaluated on six healthy subjects. These were able to control a computer-animated hand in real-time with a 20 Hz update rate. A data glove, equipped with joint angle sensors, was used to train the system and to evaluate the continuous predictions of joint angles. A linear envelop filter was used for EMG signal pre-processing and the recognition of muscle patterns was carried out with local approximation using the "lazy learning" algorithm. Furthermore, an on-line learning was used to provide feedback to the subjects. The results show that the subjects increased their performance during the experiment and all subjects performed eight or more movements with 100% accuracy in their last recording session. The final median delay for the predicted hand joint positions, compared with the recorded, was in the range of 50 to 100 ms. Off-line evaluation has earlier been done on amputees while using a data glove on the contralateral hand. The real-time control system outlined in this paper offers an effective myoelectric prosthesis control that is suitable for a miniaturized low cost implementation.This paper is a part of a ongoing development and refinement of hand prosthesis carried out within the Artificial Hand Project.
  •  
19.
  • Sebelius, Fredrik, et al. (författare)
  • Refined myoelectric control in below-elbow amputees using artificial neural networks and data glove
  • 2005
  • Ingår i: The Journal of Hand Surgery. - : Elsevier BV. - 1531-6564 .- 0363-5023. ; 30:4, s. 780-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To develop a system for refined motor control of artificial hands based on multiple electromyographic (EMG) recordings, allowing multiple patterns of hand movements. Methods: Five subjects with traumatic below-elbow amputations and 1 subject with a congenital below-elbow failure of formation performed 10 imaginary movements with their phantom hand while surface electrodes recorded the EMG data. In a training phase a data glove with 18 degrees of freedom was used for positional recording of movements in the contralateral healthy hand. These movements were performed at the same time as the imaginary movements in the phantom hand. An artificial neural network (ANN) then could be trained to associate the specific EMG patterns recorded from the amputation stump with the analogous specific hand movements synchronously performed in the healthy hand. The ability of the ANN to predict the 10 imaginary movements off line, when they were reflected in a virtual computer hand, was assessed and calculated. Results: After the ANN was trained the subjects were able to perform and control 10 hand movements in the virtual computer hand. The subjects showed a median performance of 5 types of movement with a high correlation with the movement pattern of the data glove. The subjects seemed to relearn to execute motor commands rapidly that had been learned before the accident, independent of how old the injury was. The subject with congenital below-elbow failure of formation was able to perform and control several hand movements in the computer hand that cannot be performed in a myoelectric prosthesis (eg, opposition of the thumb). Conclusions: With the combined use of an ANN and a data glove, acting in concert in a training phase, amputees rapidly can learn to execute several imaginary movements in a virtual computerized hand, this opens promising possibilities for motor control of future hand prostheses.
  •  
20.
  •  
21.
  • Svensson, Pamela, et al. (författare)
  • Characterization of Pneumatic Touch Sensors for a Prosthetic Hand
  • 2020
  • Ingår i: IEEE Sensors Journal. - 1530-437X. ; 20:16, s. 9518-9527
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results from the characterization of pneumatic touch sensors (sensing bulbs) designed to be integrated into myoelectric prostheses and body-powered prostheses. The sensing bulbs, made of silicone, were characterized individually (single sensing bulb) and as a set of five sensors integrated into a silicone glove. We looked into the sensing bulb response when applying pressure at different angles, and also studied characteristics such as repeatability, hysteresis, and frequency response. The results showed that the sensing bulbs have the advantage of responding consistently to pressure coming from different angles. Additionally, the output (pneumatic pressure) is dependent on the size of interacting object applied to the sensing bulb. This means that the sensing bulb will give higher sensation when picking up sharper objects than blunt objects. Furthermore, the sensing bulb has good repeatability, linearity with an error of 2.95± 0.40%, and maximum hysteresis error of 2.39± 0.17% on the sensing bulb. This well exceeds the required sensitivity range of a touch sensor. In summary, the sensing bulb shows potential for use in prosthetic hands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy