SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seeliger F.) "

Sökning: WFRF:(Seeliger F.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bujakowska, Kinga, et al. (författare)
  • Study of Gene-Targeted Mouse Models of Splicing Factor Gene Prpf31 Implicated in Human Autosomal Dominant Retinitis Pigmentosa (RP)
  • 2009
  • Ingår i: Investigative Ophthalmology & Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 1552-5783. ; 50:12, s. 5927-5933
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Pre-mRNA processing factor 31 (PRPF31) is a ubiquitous protein needed for the assembly of the pre-mRNA splicing machinery. It has been shown that mutations in this gene cause autosomal dominant retinitis pigmentosa 11 (RP11), which is characterized by rod-cell degeneration. Interestingly, mutations in this ubiquitously expressed gene do not lead to phenotypes other than retinal malfunction. Furthermore, the dominant inheritance pattern has shown incomplete penetrance, which poses interesting questions about the disease mechanism of RP11. METHODS. To characterize PRPF31 function in the rod cells, two animal models have been generated. One was a heterozygous knock-in mouse (Prpf31(A216P/+)) carrying a point mutation p.A216P, which has previously been identified in RP11 patients. The second was a heterozygous knockout mouse (Prpf31(+/-)). Retinal degeneration in RP11 mouse models was monitored by electroretinography and histology. RESULTS. Generation of the mouse models is presented, as are results of ERGs and retinal morphology. No degenerative phenotype on fundus examination was found in Prpf31(A216P/+) and Prpf31(+/-) mice. Prpf31(A216P/A216P) and Prpf31(-/-) genotypes were embryonic lethal. CONCLUSIONS. The results imply that Prpf31 is necessary for survival, and there is no compensation mechanism in mouse for the lack of this splicing factor. The authors suggest that p.A216P mutation in Prpf31 does not exert a dominant negative effect and that one Prpf31 wild-type allele is sufficient for maintenance of the healthy retina in mice.
  •  
6.
  • Carreras, A., et al. (författare)
  • In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model
  • 2019
  • Ingår i: Bmc Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles.ResultsTo address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified.ConclusionsHere, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
  •  
7.
  •  
8.
  • Kuehlewein, Laura, et al. (författare)
  • Clinical phenotype and course of PDE6A-associated retinitis pigmentosa disease, characterized in preparation for a gene supplementation trial
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 138:12, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Treatment trials require sound knowledge on the natural course of disease. OBJECTIVE To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. EXPOSURES Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. MAIN OUTCOMES AND MEASURES Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). RESULTS Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). CONCLUSIONS AND RELEVANCE Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy