SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seemann Felicia) "

Sökning: WFRF:(Seemann Felicia)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Binka, Edem, et al. (författare)
  • Biventricular Pressure-Volume Loop Assessment Before and After Pulmonary Valve Replacement in Tetralogy of Fallot
  • 2022
  • Ingår i: Journal of Thoracic Imaging. - 0883-5993. ; 37:5, s. 70-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with tetralogy of Fallot (TOF) may undergo pulmonary valve replacement (PVR) after initial full repair. We investigated indices of biventricular function, work and efficiency of TOF patients' using noninvasive pressure-volume (PV) loop analysis on cardiovascular magnetic resonance (CMR) images and compared pre-and post PVR groups. Biventricular segmentations of steady state free precession CMR images were performed using custom validated software (Segment version 2.0 R7067). Brachial cuff pressure estimated left ventricular (LV) systolic pressure. Right ventricular (RV) inputs were obtained from pre-PVR cardiac catheterization data. Biventricular PV loops were then derived using a time-varying elastance model. Twenty seven patients were studied: (22 pre-PVR, 5 post-PVR), mean age of 20±10.5 years and 83% male. RV stroke volume significantly differed before and after PVR (73.2±25 ml vs. 41±10 mL, P=0.01). RV stroke work (SW) and mean external power (MEP) were significantly less post-PVR, but there were no significant differences in the LV hemodynamic indices. TOF patients have reduced RV SW and MEP post-PVR suggesting improved hemodynamics. Noninvasive biventricular PV loop analysis shows potential for integration into standard CMR imaging of TOF and provides hemodynamic data that could influence management decisions.
  •  
2.
  • Gonzales, Ricardo A., et al. (författare)
  • Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours
  • 2021
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fibrillation, stroke, and diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and observer-dependent. Methods: This study presents an automated image processing algorithm for time-resolved LA segmentation in cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views using active contours. The proposed algorithm combines mitral valve tracking, automated threshold calculation, edge detection on a radially resampled image, edge tracking based on Dijkstra’s algorithm, and post-processing involving smoothing and interpolation. The algorithm was evaluated in 37 patients diagnosed mainly with paroxysmal atrial fibrillation. Segmentation accuracy was assessed using the Dice similarity coefficient (DSC) and Hausdorff distance (HD), with manual segmentations in all time frames as the reference standard. For inter-observer variability analysis, a second observer performed manual segmentations at end-diastole and end-systole on all subjects. Results: The proposed automated method achieved high performance in segmenting the LA in long-axis cine sequences, with a DSC of 0.96 for 2ch and 0.95 for 4ch, and an HD of 5.5 mm for 2ch and 6.4 mm for 4ch. The manual inter-observer variability analysis had an average DSC of 0.95 and an average HD of 4.9 mm. Conclusion: The proposed automated method achieved performance on par with human experts analyzing MRI images for evaluation of atrial size and function. [MediaObject not available: see fulltext.]
  •  
3.
  • Gonzales, Ricardo A., et al. (författare)
  • Automated Measurements of Mitral and Tricuspid Annular Dimensions in Cardiovascular Magnetic Resonance
  • 2022
  • Ingår i: ISBI 2022 - Proceedings : 2022 IEEE International Symposium on Biomedical Imaging - 2022 IEEE International Symposium on Biomedical Imaging. - 1945-7928 .- 1945-8452. - 9781665429238 ; 2022-March
  • Konferensbidrag (refereegranskat)abstract
    • Our recent work on mitral and tricuspid valve tracking in cardiovascular magnetic resonance (CMR) imaging to obtain accurate evaluations of longitudinal myocardial valve motion (both relaxation and contraction) has enabled an automated diastolic function assessment (e') with CMR. Its time-resolved capability allows a further evaluation of the valve dynamics by providing valve dimension measurements, which are essential to define the etiologies and mechanisms of valve regurgitation. In this paper, we extended the framework to automatically measure mitral annular (MA) and tricuspid annular (TA) dimensions in CMR long-axis cines with a residual neural network backbone. The framework is able to measure MA and TA diameters with an overall excellent accuracy (mean ICC=0.92), on par with an evaluated inter-observer variability (mean ICC=0.92), and to distinguish valvular dimensions between healthy controls and patients with chronic heart failure (p<0.001). Dimension measurements may benefit patients requiring annular sizing and planning of valvular interventions.
  •  
4.
  • Gonzales, Ricardo A., et al. (författare)
  • MVnet : automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study
  • 2021
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 23, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mitral annular plane systolic excursion (MAPSE) and left ventricular (LV) early diastolic velocity (e’) are key metrics of systolic and diastolic function, but not often measured by cardiovascular magnetic resonance (CMR). Its derivation is possible with manual, precise annotation of the mitral valve (MV) insertion points along the cardiac cycle in both two and four-chamber long-axis cines, but this process is highly time-consuming, laborious, and prone to errors. A fully automated, consistent, fast, and accurate method for MV plane tracking is lacking. In this study, we propose MVnet, a deep learning approach for MV point localization and tracking capable of deriving such clinical metrics comparable to human expert-level performance, and validated it in a multi-vendor, multi-center clinical population. Methods: The proposed pipeline first performs a coarse MV point annotation in a given cine accurately enough to apply an automated linear transformation task, which standardizes the size, cropping, resolution, and heart orientation, and second, tracks the MV points with high accuracy. The model was trained and evaluated on 38,854 cine images from 703 patients with diverse cardiovascular conditions, scanned on equipment from 3 main vendors, 16 centers, and 7 countries, and manually annotated by 10 observers. Agreement was assessed by the intra-class correlation coefficient (ICC) for both clinical metrics and by the distance error in the MV plane displacement. For inter-observer variability analysis, an additional pair of observers performed manual annotations in a randomly chosen set of 50 patients. Results: MVnet achieved a fast segmentation (<1 s/cine) with excellent ICCs of 0.94 (MAPSE) and 0.93 (LV e’) and a MV plane tracking error of −0.10 ± 0.97 mm. In a similar manner, the inter-observer variability analysis yielded ICCs of 0.95 and 0.89 and a tracking error of −0.15 ± 1.18 mm, respectively. Conclusion: A dual-stage deep learning approach for automated annotation of MV points for systolic and diastolic evaluation in CMR long-axis cine images was developed. The method is able to carefully track these points with high accuracy and in a timely manner. This will improve the feasibility of CMR methods which rely on valve tracking and increase their utility in a clinical setting.
  •  
5.
  • Gonzales, Ricardo A., et al. (författare)
  • TVnet : Automated Time-Resolved Tracking of the Tricuspid Valve Plane in MRI Long-Axis Cine Images with a Dual-Stage Deep Learning Pipeline
  • 2021
  • Ingår i: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030872304 ; 12906 LNCS, s. 567-576
  • Konferensbidrag (refereegranskat)abstract
    • Tracking the tricuspid valve (TV) in magnetic resonance imaging (MRI) long-axis cine images has the potential to aid in the evaluation of right ventricular dysfunction, which is common in congenital heart disease and pulmonary hypertension. However, this annotation task remains difficult and time-demanding as the TV moves rapidly and is barely distinguishable from the myocardium. This study presents TVnet, a novel dual-stage deep learning pipeline based on ResNet-50 and automated image linear transformation, able to automatically derive tricuspid annular plane systolic excursion. Stage 1 uses a trained network for a coarse detection of the TV points, which are used by stage 2 to reorient the cine into a standardized size, cropping, resolution, and heart orientation and to accurately locate the TV points with another trained network. The model was trained and evaluated on 4170 images from 140 patients with diverse cardiovascular pathologies. A baseline model without standardization achieved a Euclidean distance error of 4.0 ± 3.1 mm and a clinical-metric agreement of ICC = 0.87, whereas a standardized model improved the agreement to 2.4 ± 1.7 mm and an ICC = 0.94, on par with an evaluated inter-observer variability of 2.9 ± 2.9 mm and an ICC = 0.92, respectively. This novel dual-stage deep learning pipeline substantially improved the annotation accuracy compared to a baseline model, paving the way towards reliable right ventricular dysfunction assessment with MRI.
  •  
6.
  • Lindholm, Anthony, et al. (författare)
  • Atrioventricular plane displacement and regional function to predict outcome in pulmonary arterial hypertension
  • 2022
  • Ingår i: International Journal of Cardiovascular Imaging. - : Springer Science and Business Media LLC. - 1875-8312 .- 1573-0743. ; 38:10, s. 2235-2248
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate if left and right atrioventricular plane displacement (AVPD) or regional contributions to SV are prognostic for outcome in patients with pulmonary arterial hypertension (PAH). Seventy-one patients with PAH and 20 sex- and age-matched healthy controls underwent CMR. Myocardial borders and RV insertion points were defined at end diastole and end systole in cine short-axis stacks to compute biventricular volumes, lateral (SVlat%) and septal (SVsept%) contribution to stroke volume. Eight atrioventricular points were defined at end diastole and end systole in 2-, 3- and 4-chamber cine long-axis views for computation of AVPD and longitudinal contribution to stroke volume (SVlong%). Cut-off values for survival analysis were defined as two standard deviations above or below the mean of the controls. Outcome was defined as death or lung transplantation. Median follow-up time was 3.6 [IQR 3.7] years. Patients were 57 ± 19 years (65% women) and controls 58 ± 15 years (70% women). Biventricular AVPD, SVlong% and ejection fraction (EF) were lower and SVlat% was higher, while SVsept% was lower in PAH compared with controls. In PAH, transplantation-free survival was lower below cut-off for LV-AVPD (hazard ratio [HR] = 2.1, 95%CI 1.2–3.9, p = 0.02) and RV-AVPD (HR = 9.8, 95%CI 4.6–21.1, p = 0.005). In Cox regression analysis, lower LV-AVPD and RV-AVPD inferred lower transplantation-free survival (LV: HR = 1.16, p = 0.007; RV: HR = 1.11, p = 0.01; per mm decrease). LV-SVlong%, RV-SVlong%, LV-SVlat%, RV-SVlat%, SVsept% and LV- and RVEF did not affect outcome. Low left and right AVPD were associated with outcome in PAH, but regional contributions to stroke volume and EF were not.
  •  
7.
  • Pahlm, Ulrika, et al. (författare)
  • Evolution of left ventricular function among subjects with ST-elevation myocardial infarction after percutaneous coronary intervention
  • 2020
  • Ingår i: BMC Cardiovascular Disorders. - : Springer Science and Business Media LLC. - 1471-2261. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Atrioventricular plane displacement (AVPD) reflects longitudinal left ventricular (LV) systolic function, and wall thickening (WT) regional radial LV function. The temporal evolution of these measures after STEMI with CMR has not been evaluated. We aimed to investigate how AVPD and WT are affected globally and regionally from the sub-acute to the chronic phase after ST-elevation myocardial infarction (STEMI). METHODS: Healthy volunteers without cardiovascular disease and medication (controls, n = 20) and patients from the CHILL-MI study ( NCT01379261 ) prospectively underwent magnetic resonance imaging (MRI) 2-6 days and 6 months after STEMI (n = 77). CHILL-MI randomized STEMI-patients to cooling therapy initiated before reperfusion or standard of care. AVPD was measured at six points in three long axis cine images and wall thickening in short axis cine images. Infarction was quantified using late gadolinium enhancement (LGE) and used to define infarct and remote segments. RESULTS: There were no difference in AVPD either at acute or chronic phase (p = 0.90 and p = 0.40) or WT (p = 0.85 and p = 0.99) between patients randomized to cooling therapy and standard of care. Therefore, the results are presented for the pooled cohort. Global AVPD was decreased in both the sub-acute (12 ± 2 mm, p < 0.001) and the chronic phase (13 ± 2 mm, p < 0.001) compared to controls (15 ± 2 mm) with a partial recovery of AVPD (p < 0.001) in the chronic phase. Patients with left anterior descending (LAD) and right coronary artery (RCA) infarcts had decreased AVPD in the chronic phase in both infarcted and remote segments. Mean WT was decreased in patients with LAD infarction both in the sub-acute and the chronic phase in both infarcted and remote segments. The decrease in WT in patients with RCA and left circumflex (LCx) infarcts was more affected in the infarcted segments, especially in the chronic phase. CONCLUSION: AVPD was a global rather than regional marker of cardiac function in this STEMI study and this may explain the prognostic importance of local measurements of mitral annular plane systolic excursion (MAPSE). The decrease in WT in remote myocardium even in the chronic phase needs to be taken into consideration when combining functional measurements with infarct quantification for diagnosis of post-ischemic stunning and hibernation.
  •  
8.
  • Pahlm, Ulrika, et al. (författare)
  • Longitudinal left ventricular function is globally depressed within a week of STEMI
  • 2018
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961. ; 38:6, s. 1029-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • Sixty percent of stroke volume (SV) is generated by atrioventricular plane displacement (AVPD) in a healthy left ventricle (LV). The aims were to determine the effect of ST-elevation myocardial infarction (STEMI) on AVPD and contribution of AVPD to SV and to study the relationship between AVPD and infarct size (IS) and location. Patients from CHILL-MI and MITOCARE studies with cardiovascular magnetic resonance within a week of STEMI (n = 177, 59 ± 11 years) and healthy controls (n = 20, 62 ± 11 years) were included. Left ventricular volumes were quantified in short-axis images. AVPD was measured in six locations in long-axis images. Longitudinal contribution to SV was calculated as AVPD multiplied by the short-axis epicardial area. Patients (IS 17 ± 10% of LV) had decreased ejection fraction (48 ± 8%) compared to controls (60 ± 5%, P<0·001). Global AVPD was decreased in patients (11 ± 2 mm versus 15 ± 2 mm in controls, P<0·001) and this held true for both infarcted and remote segments. AVPD contribution to SV was lower in patients (58 ± 9%) than in controls (64 ± 8%) (P<0·001). There was a weak negative correlation between IS and AVPD (r2=0·06) but no differences in global AVPD linked to infarct location. Decrease in global and regional AVPD occur even in remote myocardium within 1 week of STEMI. Global AVPD decrease is independent of MI location, and MI size has only minor effect. Longitudinal pumping is slightly lower compared to controls but remains to be the main component to SV even after STEMI. These results highlight the difficulty in determining infarct location and size from longitudinal measures of LV function.
  •  
9.
  • Seemann, Felicia, et al. (författare)
  • Assessment of diastolic function and atrial remodeling by MRI – validation and correlation with echocardiography and filling pressure
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrosis can be estimated noninvasively by magnetic resonance imaging (MRI) using late gadolinium enhancement (LGE), but diastolic dysfunction is clinically assessed by transthoracic echocardiography (TTE), and rarely by MRI. This study aimed to evaluate well-established diastolic parameters using MRI, and validate them with TTE and left ventricular (LV) filling pressures, and to study the relationship between left atrial (LA) remodeling and parameters of diastolic function. The study retrospectively included 105 patients (53 ± 16 years, 39 females) who underwent 3D LGE MRI between 2012 and 2016. Medical charts were reviewed for the echocardiographic diastolic parameters E, A, and e′ by TTE, and pressure catheterizations. E and A were measured from in-plane phase-contrast cardiac MRI images, and e′ by feature-tracking, and validated with TTE. Interobserver and intraobserver variability was examined. Furthermore, LA volumes, function, and atrial LGE was correlated with diastolic parameters. Evaluation of e′ in MRI had strong agreement with TTE (r = 0.75, P < 0.0001), and low interobserver and intraobserver variability. E and A by TTE showed strong agreement to MRI (r = 0.77, P = 0.001; r = 0.73, P = 0.003, for E and A, respectively). Agreement between E/e′ by TTE and MRI was strong (r = 0.85, P = 0.0004), and E/e′ by TTE correlated moderately to invasive pressures (r = 0.59, P = 0.03). There was a strong relationship between LA LGE and pulmonary capillary wedge pressure (r = 0.81, P = 0.01). In conclusion, diastolic parameters can be measured with good reproducibility by cardiovascular MRI. LA LGE exhibited a strong relationship with pulmonary capillary wedge pressure, an indicator of diastolic function.
  •  
10.
  • Seemann, Felicia (författare)
  • Connecting CMR and Physiology : Expanding the capabilities of cardiovascular magnetic resonance in quantifying physiology
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The assessment of cardiovascular physiology is crucial to facilitate clinical diagnostics, treatment, and research. Physiology and anatomy can be assessed noninvasively using cardiovascular magnetic resonance (CMR), a versatile and reliable medical imaging modality free from ionizing radiation. CMR is capable of providing a vast amount of information such as displacement, velocity, flow, length, area, volume, and tissue properties. Considered the gold standard for noninvasive quantification of cardiac function and morphology, CMR is increasingly envisioned as a future one-stop-shop imaging examination for cardiovascular disease. However, quantification of important physiological aspects such as valvular motion, pressure, and force are still not accessible or readily available when using CMR. The general aim of this thesis was therefore to expand the current capabilities of CMR to include new reliable methods and tools for quantification of the atrioventricular plane displacement, transmitral flow, pressure, and ventricular force-length loops, hence allowing a more complete assessment of subject-specific cardiovascular physiology that could potentially be achieved in a single noninvasive examination.In this thesis, the current capabilities of CMR were expanded by developing and validating four new methods for quantification of physiology. In Study I, an imaging processing algorithm for feature-tracking of the atrioventricular plane displacement was proposed. The combination of this algorithm and a phase contrast CMR sequence was proposed in Study II to improve measurements of transvalvular flow, which are challenging due to the significant movement of the atrioventricular valves over the cardiac cycle. In Study III, CMR imaging, a noninvasive brachial pressure, and mathematical modelling was combined to enable a noninvasive quantification of left ventricular pressure-volume loops. Study IV used the atrioventricular plane displacement algorithm and the noninvasive pressure-volume loop technique to propose a novel method for evaluation of ventricular force-length loops, which was used to describe the energetics of longitudinal and radial pumping mechanics.The proposed methods in Study I, II, and IV require only brachial pressure and images which are typically acquired during standard clinical CMR scanning. Addition of the sequence in Study II would prolong a CMR protocol by a few minutes, suggesting that the capabilities of CMR to evaluate cardiovascular physiology during a single noninvasive examination have been expanded, thus getting closer to the one-stop-shop vision for CMR.
  •  
11.
  • Seemann, Felicia, et al. (författare)
  • Noninvasive Quantification of Pressure-Volume Loops From Brachial Pressure and Cardiovascular Magnetic Resonance
  • 2019
  • Ingår i: Circulation. Cardiovascular imaging. - 1942-0080. ; 12:1, s. 008493-008493
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pressure-volume (PV) loops provide a wealth of information on cardiac function but are not readily available in clinical routine or in clinical trials. This study aimed to develop and validate a noninvasive method to compute individualized left ventricular PV loops. METHODS: The proposed method is based on time-varying elastance, with experimentally optimized model parameters from a training set (n=5 pigs), yielding individualized PV loops. Model inputs are left ventricular volume curves from cardiovascular magnetic resonance imaging and brachial pressure. The method was experimentally validated in a separate set (n=9 pig experiments) using invasive pressure measurements and cardiovascular magnetic resonance images and subsequently applied to human healthy controls (n=13) and patients with heart failure (n=28). RESULTS: There was a moderate-to-excellent agreement between in vivo-measured and model-calculated stroke work (intraclass correlation coefficient, 0.93; bias, -0.02±0.03 J), mechanical potential energy (intraclass correlation coefficient, 0.57; bias, -0.04±0.03 J), and ventricular efficiency (intraclass correlation coefficient, 0.84; bias, 3.5±2.1%). The model yielded lower ventricular efficiency ( P<0.0001) and contractility ( P<0.0001) in patients with heart failure compared with controls, as well as a higher potential energy ( P<0.0001) and energy per ejected volume ( P<0.0001). Furthermore, the model produced realistic values of stroke work and physiologically representative PV loops. CONCLUSIONS: We have developed the first experimentally validated, noninvasive method to compute left ventricular PV loops and associated quantitative measures. The proposed method shows significant agreement with in vivo-derived measurements and could support clinical decision-making and provide surrogate end points in clinical heart failure trials.
  •  
12.
  • Seemann, Felicia, et al. (författare)
  • Time-resolved tracking of the atrioventricular plane displacement in Cardiovascular Magnetic Resonance (CMR) images
  • 2017
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 17:19
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:Atrioventricular plane displacement (AVPD) is an indicator for systolic and diastolic function and accounts for 60% of the left ventricular, and 80% of the right ventricular stroke volume. AVPD is commonly measured clinically in echocardiography as mitral and tricuspid annular plane systolic excursion (MAPSE and TAPSE), but has not been applied widely in cardiovascular magnetic resonance (CMR). To date, there is no robust automatic algorithm available that allows the AVPD to be measured clinically in CMR with input in a single timeframe. This study aimed to develop, validate and provide a method that automatically tracks the left and right ventricular AVPD in CMR images, which can be used in the clinical setting or in applied cardiovascular research in multi-center studies.METHODS:The proposed algorithm is based on template tracking by normalized cross-correlation combined with a priori information by principal component analysis. The AVPD in each timeframe is calculated for the left and right ventricle separately using CMR long-axis cine images of the 2, 3, and 4-chamber views. The algorithm was developed using a training set (n = 40), and validated in a test set (n = 113) of healthy subjects, athletes, and patients after ST-elevation myocardial infarction from 10 centers. Validation was done using manual measurements in end diastole and end systole as reference standard. Additionally, AVPD, peak emptying velocity, peak filling velocity, and atrial contraction was validated in 20 subjects, where time-resolved manual measurements were used as reference standard. Inter-observer variability was analyzed in 20 subjects.RESULTS:In end systole, the difference between the algorithm and the reference standard in the left ventricle was (mean ± SD) -0.6 ± 1.9 mm (R = 0.79), and -0.8 ± 2.1 mm (R = 0.88) in the right ventricle. Inter-observer variability in end systole was -0.6 ± 0.7 mm (R = 0.95), and -0.5 ± 1.4 mm (R = 0.95) for the left and right ventricle, respectively. Validation of peak emptying velocity, peak filling velocity, and atrial contraction yielded lower accuracy than the displacement measures.CONCLUSIONS:The proposed algorithm show good agreement and low bias with the reference standard, and with an agreement in parity with inter-observer variability. Thus, it can be used as an automatic method of tracking and measuring AVPD in CMR.
  •  
13.
  • Seemann, Felicia, et al. (författare)
  • Valvular imaging in the era of feature-tracking : A slice-following cardiac MR sequence to measure mitral flow
  • 2020
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807. ; 51:5, s. 1412-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In mitral valve dysfunction, noninvasive measurement of transmitral blood flow is an important clinical examination. Flow imaging of the mitral valve, however, is challenging, since it moves in and out of the image plane during the cardiac cycle.PURPOSE: To more accurately measure mitral flow, a slice-following MRI phase contrast sequence is proposed. This study aimed to implement such a sequence, validate its slice-following functionality in a phantom and healthy subjects, and test its feasibility in patients with mitral valve dysfunction.STUDY TYPE: Prospective.PHANTOM AND SUBJECTS: The slice-following functionality was validated in a cone-shaped phantom by measuring the depicted slice radius. Sixteen healthy subjects and 10 mitral valve dysfunction patients were enrolled at two sites.FIELD STRENGTH/SEQUENCE: 1.5T and 3T gradient echo cine phase contrast.ASSESSMENT: A single breath-hold retrospectively gated sequence using offline feature-tracking of the mitral valve was developed. Valve displacements were measured and imported to the scanner, allowing the slice position to change dynamically based on the cardiac phase. Mitral valve imaging was performed with slice-following and static imaging planes. Validation was performed by comparing mitral stroke volume with planimetric and aortic stroke volume.STATISTICAL TESTS: Measurements were compared using linear regression, Pearson's R, parametric paired t-tests, Bland-Altman analysis, and intraclass correlation coefficient (ICC).RESULTS: Phantom experiments confirmed accurate slice displacements. Slice-following was feasible in all subjects, yielding physiologically accurate mitral flow patterns. In healthy subjects, mitral and aortic stroke volumes agreed, with ICC = 0.72 and 0.90 for static and slice-following planes; with bias ±1 SDs 23.2 ± 13.2 mls and 8.4 ± 10.8 mls, respectively. Agreement with planimetry was stronger, with ICC = 0.84 and 0.96; bias ±1 SDs 13.7 ± 13.7 mls and -2.0 ± 8.8 mls for static and slice-following planes, respectively.DATA CONCLUSION: Slice-following outperformed the conventional sequence and improved the accuracy of transmitral flow, which is important for assessment of diastolic function and mitral regurgitation.LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019.
  •  
14.
  • Sjöberg, Pia, et al. (författare)
  • Non-invasive quantification of pressure-volume loops from cardiovascular magnetic resonance at rest and during dobutamine stress
  • 2021
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961 .- 1475-097X. ; 41:5, s. 467-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive quantification of pressure-volume (PV) loops from brachial pressure and cardiovascular magnetic resonance is a validated method but its application has been limited to resting heart rates. The aim of this study was to improve the previous method and validate it against invasive left-ventricular pressure measurements in an experimental porcine model, and further apply it to 16 healthy humans at rest and during dobutamine stress. In addition, the improved method calculates the arterial elastance which provides the computation of the ratio of effective arterial (Ea) to maximal ventricular elastance (Emax) representing the ventricular-arterial coupling. In the porcine model, the differences between the improved non-invasively derived PV loops and invasively measured PV loops were for stroke work (mean ± SD) 0.00 ± 0.03 J, ventricular efficiency −1.1 ± 0.4%, and contractility 1.1 ± 0.1 mmHg/ml. In human subjects during dobutamine stress, stroke work increased from 1.3 ± 0.3 to 1.7 ± 0.4 J, ventricular efficiency from 71 ± 4 to 82 ± 4%, contractility from 1.3 ± 0.2 to 2.3 ± 0.6 mmHg/ml, and the ratio of arterial to ventricular elastance decreased from 0.96 to 0.56. The improved method for non-invasive PV loops constitutes a more robust diagnostic tool for cardiac disease states in a wider range of study cohorts at both rest and during stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy