SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seet Christopher) "

Sökning: WFRF:(Seet Christopher)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gruber, Jan, et al. (författare)
  • Allantoin in human plasma, serum, and nasal-lining fluids as a biomarker of oxidative stress : avoiding artifacts and establishing real in vivo concentrations.
  • 2009
  • Ingår i: Antioxidants and Redox Signaling. - 1523-0864 .- 1557-7716. ; 11:8, s. 1767-1776
  • Tidskriftsartikel (refereegranskat)abstract
    • Urate is the terminal product of purine metabolism in primates, including humans. Urate is also an efficient scavenger of oxidizing species and is thought to be an important antioxidant in human body fluids. Allantoin, the major oxidation product of urate, has been suggested as a candidate biomarker of oxidative stress because it is not produced metabolically. Although urate is converted to allantoin under strongly alkaline pH, such conditions have been used in the past to facilitate extraction of allantoin. We evolved a method for the determination of allantoin concentrations in human plasma and serum by gas chromatography-mass spectrometry without such artifact. With this method, we show that alkaline conditions do indeed cause breakdown of urate, leading to significant overestimation of allantoin concentration in human samples. By using our alternative method, serum samples from 98 volunteers were analyzed, and allantoin levels were found to be significantly lower than was previously reported. The in vivo utility and sensitivity of our method was further evaluated in human nasal-lining fluids. We were able to demonstrate an ozone-induced increase in allantoin, in the absence of increases in either ascorbate or glutathione oxidation products.
  •  
2.
  •  
3.
  • Lyons, Oliver, et al. (författare)
  • Human venous valve disease caused by mutations in FOXC2 and GJC2
  • 2017
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 214:8, s. 2437-2452
  • Tidskriftsartikel (refereegranskat)abstract
    • Venous valves (VVs) prevent venous hypertension and ulceration. We report that FOXC2 and GJC2 mutations are associated with reduced VV number and length. In mice, early VV formation is marked by elongation and reorientation ("organization") of Prox1(hi) endothelial cells by postnatal day 0. The expression of the transcription factors Foxc2 and Nfatc1 and the gap junction proteins Gjc2, Gja1, and Gja4 were temporospatially regulated during this process. Foxc2 and Nfatc1 were coexpressed at P0, and combined Foxc2 deletion with calcineurin-Nfat inhibition disrupted early Prox1(hi) endothelial organization, suggesting cooperative Foxc2-Nfatc1 patterning of these events. Genetic deletion of Gjc2, Gja4, or Gja1 also disrupted early VV Prox1(hi) endothelial organization at postnatal day 0, and this likely underlies the VV defects seen in patients with GJC2 mutations. Knockout of Gja4 or Gjc2 resulted in reduced proliferation of Prox1(hi) valve-forming cells. At later stages of blood flow, Foxc2 and calcineurin-Nfat signaling are each required for growth of the valve leaflets, whereas Foxc2 is not required for VV maintenance.
  •  
4.
  • Lyons, Oliver, et al. (författare)
  • Mutations in EPHB4 cause human venous valve aplasia
  • 2021
  • Ingår i: JCI Insight. - : American Society For Clinical Investigation. - 2379-3708. ; 6:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy