SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seliger B.) "

Sökning: WFRF:(Seliger B.)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sikoparija, B., et al. (författare)
  • Spatial and temporal variations in airborne Ambrosia pollen in Europe
  • 2017
  • Ingår i: Aerobiologia. - : Springer Science and Business Media LLC. - 0393-5965 .- 1573-3025. ; 33, s. 181-189
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016, The Author(s). The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N–60°N; 2°W–45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August–September) recorded during a 10-year period (2004–2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p<0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.
  •  
3.
  • Sofiev, M., et al. (författare)
  • Designing an automatic pollen monitoring network for direct usage of observations to reconstruct the concentration fields
  • 2023
  • Ingår i: SCIENCE OF THE TOTAL ENVIRONMENT. - 0048-9697. ; 900
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider several approaches to a design of a regional-to-continent-scale automatic pollen monitoring network in Europe. Practical challenges related to the arrangement of such a network limit the range of possible solutions. A hierarchical network is discussed, highlighting the necessity of a few reference sites that follow an extended observations protocol and have corresponding capabilities. Several theoretically rigorous approaches to a network design have been developed so far. However, before starting the process, a network purpose, a criterion of its performance, and a concept of the data usage should be formalized. For atmospheric composition monitoring, developments follow one of the two concepts: a network for direct representation of concentration fields and a network for model-based data assimilation, inverse problem solution, and forecasting. The current paper demonstrates the first approach, whereas the inverse problems are considered in a follow-up paper. We discuss the approaches for the network design from theoretical and practical standpoints, formulate criteria for the network optimality, and consider practical constraints for an automatic pollen network. An application of the methodology is demonstrated for a prominent example of Germany's pollen monitoring network. The multi-step method includes (i) the network representativeness and (ii) redundancy evaluation followed by (iii) fidelity evaluation and improvement using synthetic data.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Myszkowska, D., et al. (författare)
  • Unusually high birch (Betula spp.) pollen concentrations in Poland in 2016 related to long-range transport (LRT) and the regional pollen occurrence
  • 2021
  • Ingår i: Aerobiologia. - : Springer Science and Business Media LLC. - 0393-5965 .- 1573-3025. ; 37:3, s. 543-559
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the highest birch (Betula spp.) pollen concentrations were recorded in Krakow (Poland) since the beginning of pollen observations in 1991. The aim of this study was to ascertain the reason for this phenomenon, taking the local sources of pollen in Poland and long-range transport (LRT) episodes associated with the pollen influx from other European countries into account. Three periods of higher pollen concentrations in Krakow in 2016 were investigated with the use of pollen data, phenological data, meteorological data and the HYSPLIT numerical model to calculate trajectories up to 4 days back (96 h) at the selected Polish sites. From 5 to 8 April, the birch pollen concentrations increased in Krakow up to 4000 Pollen/m(3), although no full flowering of birch trees in the city was observed. The synoptic situation with air masses advection from the South as well as backward trajectories and the general birch pollen occurrence in Europe confirm that pollen was transported mainly from Serbia, Hungary, Austria, the Czech Republic, Slovakia, into Poland. The second analyzed period (13-14 April) was related largely to the local flowering of birches, while the third one in May (6-7 May) mostly resulted from the birch pollen transport from Fennoscandia and the Baltic countries. Unusual high pollen concentrations at the beginning of the pollen season can augment the symptomatic burden of birch pollen allergy sufferers and should be considered during therapy. Such incidents also affect the estimation of pollen seasons timing and severity.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Donia, M., et al. (författare)
  • Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFN gamma Signaling
  • 2017
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 77:17, s. 4562-4566
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer immunotherapy can result in durable tumor regressions in some patients. However, patients who initially respond often experience tumor progression. Here, we report mechanistic evidence of tumoral immune escape in an exemplary clinical case: a patient with metastatic melanoma who developed disease recurrence following an initial, unequivocal radiologic complete regression after T-cell-based immunotherapy. Functional cytotoxic T-cell responses, including responses to one mutant neoantigen, were amplified effectively with therapy and generated durable immunologic memory. However, these immune responses, including apparently effective surveillance of the tumor mutanome, did not prevent recurrence. Alterations of the MHC class I antigen-processing and presentation machinery (APM) in resistant cancer cells, but not antigen loss or impaired IFN gamma signaling, led to impaired recognition by tumor-specific CD8(+) T cells. Our results suggest that future immunotherapy combinations should take into account targeting cancer cells with intact and impaired MHC class I-related APM. Loss of target antigens or impaired IFN gamma signaling does not appear to be mandatory for tumor relapse after a complete radiologic regression. Personalized studies to uncover mechanisms leading to disease recurrence within each individual patient are warranted.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Seliger, B, et al. (författare)
  • TAP off--tumors on
  • 1997
  • Ingår i: Immunology today. - 0167-5699. ; 18:6, s. 292-299
  • Tidskriftsartikel (refereegranskat)
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy