SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Semb Henrik) "

Sökning: WFRF:(Semb Henrik)

  • Resultat 1-50 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adewumi, Oluseun, et al. (författare)
  • Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  • 2007
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 25:7, s. 803-816
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
  •  
2.
  • Ameri, Jacqueline, et al. (författare)
  • Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 19:1, s. 36-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin-producing cells in vitro. We found that in vitro PEC proliferation declines due to enhanced expression of the cyclin-dependent kinase (CDK) inhibitors CDKN1A and CDKN2A. However, we identified a time window when reducing CDKN1A or CDKN2A expression increased proliferation and yield of GP2+ PECs. Altogether, our results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.
  •  
3.
  • Ameri, Jacqueline, et al. (författare)
  • FGF2 Specifies hESC-Derived Definitive Endoderm into Foregut/Midgut Cell Lineages in a Concentration-Dependent Manner.
  • 2010
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 28, s. 45-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior-posterior and left-right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC-derived definitive endoderm (DE) into different foregut lineages in a dosage-dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation towards a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1+ pancreatic progenitors. High FGF2 concentrations also promote differentiation towards an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to our knowledge that induction of PDX1+ pancreatic progenitors relies on FGF2-mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled - facts that will be of great value for future regenerative cell therapies.
  •  
4.
  • Andersson, Mattias K, 1979, et al. (författare)
  • The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response
  • 2008
  • Ingår i: BMC Cell Biology. - : Springer Science and Business Media LLC. - 1471-2121. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. RESULTS: FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. CONCLUSION: Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.
  •  
5.
  •  
6.
  • Arregi, Igor, et al. (författare)
  • Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signaling
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:12, s. 4615-4631
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagonβ and insulinβ cells. During the secondary transition, the reduction of Neurogenin3β endocrine progenitors in the mutant dorsal pancreas accounted for fewer β-and α-cells. Changes in the expression of β-and α-cellspecific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal andepithelialRdh10forpancreogenesisandthefirstwaveofendocrinecell differentiation.Wefurther propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source ofRAsignals in the second wave of endocrine cell differentiation.
  •  
7.
  • Blust, Kelly (författare)
  • Advancing 3D Cell Cultures of Stem-Cell Derived Pancreatic Islets and Breast Cancer Cells Using Recombinant Functionalized Spider Silk : Insights into cellular composition using bioinformatic methods
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The culture of cells in 3D creates a more physiologically relevant cell environment than conventional 2D cultures. Interactions of cells with the extracellular matrix induce important cellular signalling that regulates cell adhesion, migration, proliferation, differentiation, and survival. This is crucial for modelling cell development and disease. This thesis aims to develop and analyse improved 3D cell culture methods for stem cell-derived pancreatic islets (SC-islets) and breast cancer cell lines using a functionalized recombinant spider silk. Spider silk is a natural protein-based material with remarkable mechanical properties of high strength and elasticity. It is also biodegradable and cytocompatible. FN-silk, the recombinant spider silk protein utilized in this thesis, is functionalized with a cell binding motif (RGD) from fibronectin, to improve cell adhesion. Notably, FN-silk self-assembles at the liquid-air interface into a fibrillar structure, making it favourable as support for cell culture. In this thesis, bioinformatic methods were used to discover how the FN-silk supported environment affects the gene expression of cells and the cellular heterogeneity of SC-islets during a differentiation process. Additionally, bioinformatical analysis of the effect of 3D cell culture of breast cancer cell lines in FN-silk networks was performed. The first part of the thesis addresses serval challenges in pancreatic islet transplantation, by presenting an optimized protocol for pancreatic differentiation from human pluripotent stem cells, improving in vitro cultivation, and developing a cryopreservation method for SC-islets. The differentiation protocol presented in Paper 1 resulted in pure endocrine cell populations, avoiding unwanted proliferating and non-endocrine cells. It was also demonstrated that these SC-islets matured in vivo, and could effectively reverse diabetes in a diabetic mouse model. Single-cell RNA sequencing analysis provided new insights into the cellular composition and gene expression of the SC-islets before and after transplantation. In Paper 2, an innovative method for 3D in vitro cultivation of SC-islets using FN-silk networks mimicking the extracellular matrix was established. The FN-silk networks provided structural support for in vitro cultivation and handling during in vivo transplantation. The viability and functionality of free and FN-silk incorporated SC-islets were evaluated and compared. Single-cell RNA sequencing analyses confirmed maintenance of cellular composition, with a slightly improved beta cell maturation for SC-islets supported by FN-silk. In Paper 3, a novel strategy for cryopreservation of SC-islets was explored. The twisted vitrification method, previously employed for 2D cultures, was adapted for 3D cultures by utilizing integration into FN-silk networks to facilitate handling during the vitrification process. The second part of the thesis aimed to develop a method for 3D culture of breast cancer cells to better replicate the complexity of the tumour microenvironment. In Paper 4, FN-silk networks were used to generate a 3D environment for breast cancer cells where crucial cell-ECM interactions can be established. Proliferation rates and key marker expression of the cells cultured in 2D versus in the FN-silk network environment were investigated. Bioinformatic analysis of bulk RNA sequencing data was used to compare breast cancer cells in conventional 2D cell cultures with those cultured in 3D with the support of FNsilk. In conclusion, the work conducted in this thesis presents significant advancements in the development and analyses of 3D cell cultures of both SCislets and breast cancer cell lines, potentially enhancing therapeutic applications, disease modeling, and drug testing.
  •  
8.
  • Brolen, Gabriella, et al. (författare)
  • Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage
  • 2010
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 1873-4863 .- 0168-1656. ; 145:3, s. 284-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells offer a potential unlimited supply for functional hepatocytes, since they can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing various hepatic markers. These cells could be used in various applications such as studies of drug metabolism and hepatotoxicity, which however, would require a significant expression of drug metabolizing enzymes. To derive these cells we use a stepwise differentiation protocol where growth- and maturation factors are added. The first phase involves the formation of definitive endoderm. Next, these cells are treated with factors known to promote the induction and proliferation towards hepatic progenitor cell types. In the last phase the cells are terminally differentiated and maturated into functional hepatocyte-like cells. The cultures were characterized by analysis of endodermal or hepatic markers and compared to cultures derived without induction via definitive endoderm. Hepatic functions such as urea secretion, glycogen storage, indocyanine green uptake and secretion, and cytochrome P450-expression and activity were evaluated. The DE-Hep showed a hepatocyte morphology with sub-organized cells and exhibited many liver-functions including transporter activity and capacity to metabolize drugs specific for important cytochrome P450 sub-families. This represents an importantstep in differentiation of hESC into functional hepatocytes. (C) 2009 Elsevier B.V. All rights reserved.
  •  
9.
  • Brolén, Gabriella, et al. (författare)
  • Signals From the Embryonic Mouse Pancreas Induce Differentiation of Human Embryonic Stem Cells Into Insulin-Producing {beta}-Cell-Like Cells.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 2867-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent success in restoring normoglycemia in type 1 diabetes by islet cell transplantation indicates that cell replacement therapy of this severe disease is achievable. However, the severe lack of donor islets has increased the demand for alternative sources of beta-cells, such as adult and embryonic stem cells. Here, we investigate the potential of human embryonic stem cells (hESCs) to differentiate into beta-cells. Spontaneous differentiation of hESCs under two-dimensional growth conditions resulted in differentiation of Pdx1(+)/Foxa2(+) pancreatic progenitors and Pdx1(+)/Isl1(+) endocrine progenitors but no insulin-producing cells. However, cotransplantation of differentiated hESCs with the dorsal pancreas, but not with the liver or telencephalon, from mouse embryos resulted in differentiation of beta-cell-like cell clusters. Comparative analysis of the basic characteristics of hESC-derived insulin(+) cell clusters with human adult islets demonstrated that the insulin(+) cells share important features with normal beta-cells, such as synthesis (proinsulin) and processing (C-peptide) of insulin and nuclear localization of key beta-cell transcription factors, including Foxa2, Pdx1, and Isl1.
  •  
10.
  •  
11.
  • Edsbagge, Josefina, 1973, et al. (författare)
  • Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme
  • 2005
  • Ingår i: DEVELOPMENT. - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 132:5, s. 1085-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • Early growth and differentiation of the pancreatic endoderm is regulated by soluble factors from the pancreatic mesenchyme. Previously, we demonstrated that N-cadherin-deficient mice lack a dorsal pancreas, due to a critical role of N-cadherin in dorsal pancreatic mesenchymal cell survival. Here, we show that restoring cardiac and circulatory function in N-cadherin null mice by cardiac-specific expression of N-cadherin, rescues formation of the dorsal pancreas, indicating that the phenotype is secondary to defects related to cardiac/vascular function. Based on this observation, we demonstrate that soluble factors present in plasma, such as sphingosine-1-phosphate, rescue formation of the dorsal pancreas in N-cadherin-deficient mice. We also show that sphingosine-1-phosphate indirectly promotes budding of the pancreatic endoderm by stimulating pancreatic mesenchymal cell proliferation. Finally, we identify sphingosine-1-phosphate receptors within the mesenchyme and show that pertussis toxin blocks the sphingosine-1-phosphate-induced actions, suggesting the involvement of G-protein-coupled sphingosine-1-phosphate receptors. Thus,we propose a new model where blood vessel-derived sphingosine-1-phosphate stimulates growth and budding of the dorsal pancreatic endoderm by induction of mesenchymal cell proliferation.
  •  
12.
  •  
13.
  • Ellerström, Catharina, et al. (författare)
  • Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation
  • 2007
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 25:7, s. 1690-1696
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, human embryonic stem cells (hESCs) are propagated by mechanical dissection or enzymatic dissociation into clusters of cells. To facilitate up-scaling and the use of hESC in various experimental manipulations, such as fluorescence-activated cell sorting, electroporation, and clonal selection, it is important to develop new, stable culture systems based on single-cell enzymatic propagation. Here, we show that hESCs, which were derived and passaged by mechanical dissection, can be rapidly adjusted to propagation by enzymatic dissociation to single cells. As an indication of the stability of this culture system, we demonstrate that hESCs can be maintained in an undifferentiated, pluripotent, and genetically normal state for up to 40 enzymatic passages. We also demonstrate that a recombinant trypsin preparation increases clonal survival compared with porcine trypsin. Finally, we show that human foreskin fibroblast feeders are superior to the commonly used mouse embryonic fibroblast feeders in terms of their ability to prevent spontaneous differentiation after single-cell passaging. Importantly, the culture system is widely applicable and should therefore be of general use to facilitate reliable large-scale cultivation of hESCs, as well as their use in various experimental manipulations.
  •  
14.
  • Englund, Mikael C. O., 1971, et al. (författare)
  • The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking.
  • 2010
  • Ingår i: In vitro cellular & developmental biology. Animal. - : Springer Science and Business Media LLC. - 1543-706X .- 1071-2690. ; 46:3-4, s. 217-30
  • Tidskriftsartikel (refereegranskat)abstract
    • This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions. In addition, several subclones have been established, including a karyoptypical normal clone from a trisomic mother line. A master cell banking system has been utilised in concert with an extensive characterisation programme, ensuring a supply of high quality pluripotent stem cells for further research and development. In this report we also present the first data on a proprietary novel antibody, hES-Cellect, that exhibits high specificity for undifferentiated hES cells. In addition to the traditional manual dissection approach of propagating hES cells, we here also report on the successful approaches of feeder-free cultures as well as single cell cultures based on enzymatic digestion. All culture systems used as reported here have maintained the hES cells in a karyotypical normal and pluripotent state. These systems also have the advantage of being the principal springboards for further scale up of cultures for industrial or clinical applications that would require vastly more cells that can be produced by mechanical means.
  •  
15.
  •  
16.
  • Fischer, Yvonne, et al. (författare)
  • NANOG reporter cell lines generated by gene targeting in human embryonic stem cells.
  • 2010
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. METHODOLOGY/PRINCIPAL FINDINGS: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG(high) and NANOG(low) hESCs, providing candidates for NANOG downstream targets hESCs. CONCLUSION/SIGNIFICANCE: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANOG in pluripotent hESCs.
  •  
17.
  • Funa, Nina, et al. (författare)
  • β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4.
  • 2015
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 16:6, s. 639-652
  • Tidskriftsartikel (refereegranskat)abstract
    • Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector β-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we demonstrate a broader role for β-catenin in PS formation by analyzing its genome-wide binding in a human embryonic stem cell model of PS induction. β-catenin occupies regulatory regions in numerous PS and neural crest genes, and direct interactions between β-catenin and the Nodal effectors SMAD2/SMAD3 are required at these regions for PS gene activation. Furthermore, OCT4 binding in proximity to these sites is likewise required for PS induction, suggesting a collaborative interaction between β-catenin and OCT4. Induction of neural crest genes by β-catenin is repressed by SMAD2/SMAD3, ensuring proper lineage specification. This study provides mechanistic insight into how Wnt signaling controls early cell lineage decisions.
  •  
18.
  • Gerhardt, H, et al. (författare)
  • Pericytes: gatekeepers in tumour cell metastasis?
  • 2008
  • Ingår i: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 1432-1440 .- 0946-2716. ; 86:2, s. 135-144
  • Forskningsöversikt (refereegranskat)abstract
    • Tumour cells use two major routes to spread during metastasis, e.g. lymph vessels and blood vessels within or surrounding the primary tumour. The growth rate of the primary tumour often correlates with the quantity of new blood vessels that form within the tumour. However, qualitative abnormalities of the tumour vasculature profoundly affect the perfusion of the primary tumour and the escape of tumour cells into the circulation. In this paper, we review recent evidence for a novel role of the supporting mural cells in limiting blood-borne metastasis.
  •  
19.
  • Gertow, Karin, 1978- (författare)
  • Human Embryonic Stem Cells; A novel model system for early human development
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Human embryonic stem cells (HESC) have since their first description in 1998 been recognized as a theoretically endless source of cells capable of differentiation into any somatic cell type. Although great attention has been given to their potential use in cell- based therapy, they are equally important as research tools for studies on early human development, both normal and diseased. This thesis provides basic knowledge of HESC and supports their relevant use as a model system for early human development. HESC are differentiating spontaneously into all three embryonic germ layers (ectoderm, mesoderm and endoderm) in vitro, and when xeno-grafted to immunodeficient mice they grow in vivo as teratomas. In paper I, the potential of HESC differentiation in vivo described and their interaction with the host tissue was for the first time explored. We could show that undifferentiated HESC formed highly organized, even organoid structures, composed of multiple cell types originating from all germ layers. Examples are renal development composed of tubules and glomeruli with associated vascular supply; neural ganglia containing glial cells, and nerves with synapsoid connections. Intestinal structures were found, with basally located proliferative stem cells, goblet cells and smooth muscle layers; as well as skin including keratinized cells and glands. Importantly, HESC derived cells were functionally integrated with the host tissue. Blood carrying compound human/mouse vascularisation was found, concluding that HESC derived vessels anastomosed with the host vascularisation. In the following study (paper II), the kinetic progression of HESC differentiation in vivo was followed. Despite the absence of accurate environmental cues, HESC launched a developmental program with many similarities to normal development. For instance, indications were found for gastrulating events and progressive maturation of the tissues, similar to organogenesis. Appearance of human vascularisation (day 20/30) was coupled to a rapid net expansion of the teratoma, suggesting that growth was hampered up to this point. By day 45, more organized structures were apparent; however not until day 60 could for instance mature neurons (NFP) be detected. Already at the first observation point day 5 after grafting, we observed HESC derived epithelia reminiscent of the epiblast or primitive ectoderm. Strong support for an early neuroepithelial origin of such structures was also found. Although indications point towards remaining pluripotent cells throughout the study, the early and to a great extent dominating finding of neuroepithelia, raises questions regarding the origin of all other non-ectodermal tissues. The chromosomal integrity of HESC is a concern for future therapeutic interventions but also a possibility for studies of human genetic disease and tumor progression. We studied the chromosomal stability and found the karyotype to be affected by culture conditions. An advertant sub-line selected for feeder independent growth resulted in a variant exhibiting i12p and 7q deletion in 100% of the cells (paper II). This variant showed pluripotency in vitro, but formed no teratomas in vivo. Variants obtained after bulk expansions were found trisomic for chromosome 12 (paper IV). Such cells appeared pluripotent in vitro and in vivo, but gave a significantly higher frequency of renal development in vivo as compared to the parental diploid line. Interestingly, chromosome 12 changes are frequent findings in germ cell tumours. All together these studies highlight differences between HESC phenotype in vitro and in vivo and thereby the importance of studies in vivo. Furthermore this thesis supports the relevant use of HESC as a model system for early human development.
  •  
20.
  • Greiner, Thomas U., 1977, et al. (författare)
  • Rac1 regulates pancreatic islet morphogenesis.
  • 2009
  • Ingår i: BMC developmental biology. - 1471-213X. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration. RESULTS: To address the functional role of Rac1 in islet morphogenesis, we generated transgenic mice expressing dominant negative Rac1 under regulation of the Rat Insulin Promoter. Blocking Rac1 function in beta cells inhibited their migration away from the ductal epithelium in vivo. Consistently, transgenic islet cell spreading was compromised in vitro. We also show that the EGF-receptor ligand betacellulin induced actin remodelling and cell spreading in wild-type islets, but not in transgenic islets. Finally, we demonstrate that cell-cell contact E-cadherin increased as a consequence of blocking Rac1 activity. CONCLUSION: Our data support a model where Rac1 signalling controls islet cell migration by modulating E-cadherin-mediated cell-cell adhesion. Furthermore, in vitro experiments show that betacellulin stimulated islet cell spreading and actin remodelling is compromised in transgenic islets, suggesting that betacellulin may act as a regulator of Rac1 activity and islet migration in vivo. Our results further emphasize Rac1 as a key regulator of cell migration and cell adhesion during tissue and organ morphogenesis.
  •  
21.
  • Hansson, Mattias, et al. (författare)
  • Artifactual insulin release from differentiated embryonic stem cells.
  • 2004
  • Ingår i: Diabetes. - 0012-1797. ; 53:10, s. 2603-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several recent reports claim the generation of insulin-producing cells from embryonic stem cells via the differentiation of progenitors that express nestin. Here, we investigate further the properties of these insulin-containing cells. We find that although differentiated cells contain immunoreactive insulin, they do not contain proinsulin-derived C-peptide. Furthermore, we find variable insulin release from these cells upon glucose addition, but C-peptide release is never detected. In addition, many of the insulin-immunoreactive cells are undergoing apoptosis or necrosis. We further show that cells cultured in the presence of a phosphoinositide 3-kinase inhibitor, which previously was reported to facilitate the differentiation of insulin(+) cells, are not C-peptide immunoreactive but take up fluorescein isothiocyanate-labeled insulin from the culture medium. Together, these data suggest that nestin(+) progenitor cells give rise to a population of cells that contain insulin, not as a result of biosynthesis but from the uptake of exogenous insulin. We conclude that C-peptide biosynthesis and secretion should be demonstrated to claim insulin production from embryonic stem cell progeny.
  •  
22.
  • Heins, Nico, et al. (författare)
  • Clonal derivation and characterization of human embryonic stem cell lines.
  • 2006
  • Ingår i: Journal of biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 122:4, s. 511-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESC) are isolated as clusters of cells from the inner cell mass of blastocysts and thus should formally be considered as heterogeneous cell populations. Homogenous hESC cultures can be obtained through subcloning. Here, we report the clonal derivation and characterization of two new hESC lines from the parental cell line SA002 and the previously clonally derived cell line AS034.1, respectively. The hESC line SA002 was recently reported to have an abnormal karyotype (trisomy 13), but within this population of cells we observed rare individual cells with an apparent normal karyotype. At a cloning efficiency of 5%, we established 33 subclones from SA002, out of which one had a diploid karyotype and this subline was designated SA002.5. From AS034.1 we established one reclone designated AS034.1.1 at a cloning efficiency of 0.1%. These two novel sublines express cell surface markers indicative of undifferentiated hESC (SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), Oct-4, alkaline phosphatase, and they display high telomerase activity. In addition, the cells are pluripotent and form derivatives of all three embryonic germ layers in vitro as well as in vivo. These results, together with the clonal character of SA002.5 and AS034.1.1 make these homogenous cell populations very useful for hESC based applications in drug development and toxicity testing. In addition, the combination of the parental trisomic hESC line SA002 and the diploid subclone SA002.5 provides a unique experimental system to study the molecular mechanisms underlying the pathologies associated with trisomy 13.
  •  
23.
  • Heins, Nico, et al. (författare)
  • Derivation, characterization, and differentiation of human embryonic stem cells.
  • 2004
  • Ingår i: Stem cells (Dayton, Ohio). - 1066-5099. ; 22:3, s. 367-76
  • Tidskriftsartikel (refereegranskat)abstract
    • The derivation of human embryonic stem (hES) cells establishes a new avenue to approach many issues in human biology and medicine for the first time. To meet the increased demand for characterized hES cell lines, we present the derivation and characterization of six hES cell lines. In addition to the previously described immunosurgery procedure, we were able to propagate the inner cell mass and establish hES cell lines from pronase-treated and hatched blastocysts. The cell lines were extensively characterized by expression analysis of markers characteristic for undifferentiated and differentiated hES cells, karyotyping, telomerase activity measurement, and pluripotency assays in vitro and in vivo. Whereas three of the cell lines expressed all the characteristics of undifferentiated pluripotent hES cells, one cell line carried a chromosome 13 trisomy while maintaining an undifferentiated pluripotent state, and two cell lines, one of which carried a triploid karyotype, exhibited limited pluripotency in vivo. Furthermore, we clonally derived one cell line, which could be propagated in an undifferentiated pluripotent state.
  •  
24.
  • Hermann, Florian M., et al. (författare)
  • An insulin hypersecretion phenotype precedes pancreatic beta cell failure in MODY3 patient-specific cells
  • 2023
  • Ingår i: Cell Stem Cell. - : Elsevier. - 1934-5909 .- 1875-9777. ; 30:1, s. 38-51
  • Tidskriftsartikel (refereegranskat)abstract
    • MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient -specific HNF1A+/R272C R cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 0 cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 0 cells. Our findings identify a pathogenic mechanism leading to 0 cell failure in MODY3.
  •  
25.
  • Hermann, Florian M., et al. (författare)
  • An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells
  • 2023
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 30:1, s. 8-51
  • Tidskriftsartikel (refereegranskat)abstract
    • MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.
  •  
26.
  • Hernebring, Malin, 1978, et al. (författare)
  • Elimination of damaged proteins during differentiation of embryonic stem cells
  • 2006
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:20, s. 7700-7705
  • Tidskriftsartikel (refereegranskat)abstract
    • During mammalian aging, cellular proteins become increasingly damaged: for example, by carbonylation and formation of advanced glycation end products (AGEs). The means to ensure that offspring are born without such damage are unknown. Unexpectedly, we found that undifferentiated mouse ES cells contain high levels of both carbonyls and AGEs. The damaged proteins, identified as chaperones and proteins of the cytoskeleton, are the main targets for protein oxidation in aged tissues. However, the mouse ES cells rid themselves of such damage upon differentiation in vitro. This elimination of damaged proteins coincides with a considerably elevated activity of the 20S proteasome. Moreover, damaged proteins were primarily observed in the inner cell mass of blastocysts, whereas the cells that had embarked on differentiation into the trophectoderm displayed drastically reduced levels of protein damage. Thus, the elimination of protein damage occurs also during normal embryonic development in vivo. This clear-out of damaged proteins may be a part of a previously unknown rejuvenation process at the protein level that occurs at a distinct stage during early embryonic development
  •  
27.
  • Hernebring, Malin, 1978, et al. (författare)
  • Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28
  • 2013
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 3:3, s. artikel nr 1381-
  • Tidskriftsartikel (refereegranskat)abstract
    • In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activator PA28 alpha beta (11S), subunits of the immunoproteasome (20Si), and the 20Si regulator TNF alpha. This induction is accompanied by assembly of mature PA28-20S(i) proteasomes and elevated proteasome activity. Inhibiting accumulation of PA28 alpha using miRNA counteracted the removal of damaged proteins demonstrating that PA28 alpha beta has a hitherto unidentified role required for resetting the levels of protein damage at the transition from self-renewal to cell differentiation.
  •  
28.
  • Herzig, M., et al. (författare)
  • Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling
  • 2007
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 26:16, s. 2290-2298
  • Tidskriftsartikel (refereegranskat)abstract
    • E-cadherin-mediated cell-cell adhesion is frequently lost during the development of malignant epithelial cancers. Employing a transgenic mouse model of beta-cell carcinogenesis (Rip1Tag2) we have previously shown that the loss of E-cadherin is a rate-limiting step in the progression from adenoma to carcinoma. However, the mere loss of cell adhesion may not be sufficient and additional signals are required to cause tumor cells to permeate the basal membrane and to invade surrounding tissue. Besides being an important component of the E-cadherin cell-adhesion complex, beta-catenin plays a critical role in canonical Wnt signaling. We report here that beta-catenin-mediated Wnt signaling does not contribute to tumor progression in Rip1Tag2 mice. E-cadherin downregulates beta-catenin/Tcf-mediated transcriptional activity by sequestrating beta-catenin into E-cadherin cell-adhesion complexes even in the presence of activated Wnt signaling. Upon loss of E-cadherin expression, beta-catenin is degraded and Tcf/beta-catenin-mediated transcriptional activity is not induced. Moreover, forced expression of constitutive-active beta-catenin or genetic ablation of Tcf/beta-catenin transcriptional activity in tumor cells of Rip1Tag2 transgenic mice does not affect tumor progression. Together, the data indicate that signals other than beta-catenin/Tcf-mediated Wnt signaling are induced by the loss of E-cadherin during tumor progression in Rip1Tag2 transgenic mice.
  •  
29.
  • Håkansson, Joakim, 1975, et al. (författare)
  • N-CAM exhibits a regulatory function in pathological angiogenesis in oxygen induced retinopathy.
  • 2011
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis.
  •  
30.
  • Håkansson, Joakim, 1975, et al. (författare)
  • Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion
  • 2005
  • Ingår i: Tumour Biology. - : Springer Science and Business Media LLC. - 1010-4283 .- 1423-0380. ; 26:2, s. 103-112
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.
  •  
31.
  • Johannesson, Martina, et al. (författare)
  • FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner.
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Retinoic acid (RA) and fibroblast growth factor 4 (FGF4) signaling control endoderm patterning and pancreas induction/expansion. Based on these findings, RA and FGFs, excluding FGF4, have frequently been used in differentiation protocols to direct differentiation of hESCs into endodermal and pancreatic cell types. In vivo, these signaling pathways act in a temporal and concentration-dependent manner. However, in vitro, the underlying basis for the time of addition of growth and differentiation factors (GDFs), including RA and FGFs, as well as the concentration is lacking. Thus, in order to develop robust and reliable differentiation protocols of ESCs into mature pancreatic cell types, including insulin-producing beta cells, it will be important to mechanistically understand each specification step. This includes differentiation of mesendoderm/definitive endoderm into foregut endoderm--the origin of pancreatic endoderm. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data on the individual and combinatorial role of RA and FGF4 in directing differentiation of ActivinA (AA)-induced hESCs into PDX1-expressing cells. FGF4's ability to affect endoderm patterning and specification in vitro has so far not been tested. By testing out the optimal concentration and timing of addition of FGF4 and RA, we present a robust differentiation protocol that on average generates 32% PDX1(+) cells. Furthermore, we show that RA is required for converting AA-induced hESCs into PDX1(+) cells, and that part of the underlying mechanism involves FGF receptor signaling. Finally, further characterization of the PDX1(+) cells suggests that they represent foregut endoderm not yet committed to pancreatic, posterior stomach, or duodenal endoderm. CONCLUSION/SIGNIFICANCE: In conclusion, we show that RA and FGF4 jointly direct differentiation of PDX1(+) foregut endoderm in a robust and efficient manner. RA signaling mediated by the early induction of RARbeta through AA/Wnt3a is required for PDX1 expression. Part of RA's activity is mediated by FGF signaling.
  •  
32.
  • Johansson, Jenny, et al. (författare)
  • N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover.
  • 2010
  • Ingår i: Genesis: The Journal of Genetics and Development. - : Wiley. - 1526-954X. ; 48:6, s. 374-381
  • Tidskriftsartikel (refereegranskat)abstract
    • The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.
  •  
33.
  • Kesavan, Gokul, et al. (författare)
  • Cdc42-mediated tubulogenesis controls cell specification.
  • 2009
  • Ingår i: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 139:4, s. 791-801
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
  •  
34.
  • Kesavan, Gokul, et al. (författare)
  • Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation.
  • 2014
  • Ingår i: Development: For advances in developmental biology and stem cells. - : The Company of Biologists. - 1477-9129. ; 141:3, s. 685-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in β cells expressing constitutively active Cdc42 partially restores both delamination and β cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis.
  •  
35.
  •  
36.
  • Löf-Öhlin, Zarah M., et al. (författare)
  • EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity
  • 2017
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 19:11, s. 1313-1325
  • Tidskriftsartikel (refereegranskat)abstract
    • Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction. Subsequently, betacellulin, working via inhibition of atypical protein kinase C (aPKC), causes apical domain constriction within neurogenin3 + endocrine progenitors, which results in reduced Notch signalling, increased neurogenin3 expression, and β-cell differentiation. Notably, the ligand-specific EGFR output is not driven at the ligand level, but seems to have evolved in response to stage-specific epithelial influences. The EGFR-mediated control of β-cell differentiation via apical polarity is also conserved in human neurogenin3 + cells. We provide insight into how ligand-specific EGFR signalling coordinates epithelial morphogenesis and cell differentiation via apical polarity dynamics.
  •  
37.
  • Noaksson, K, et al. (författare)
  • Monitoring differentiation of human embryonic stem cells using real-time PCR
  • 2005
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 23:10, s. 1460-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a general lack of rapid, sensitive, and quantitative methods for the detection of differentiating human embryonic stem cells (hESCs). Using light microscopy and immunohistochemistry, we observed that morphological changes of differentiating hESCs precede any major alterations in the expression of several commonly used hESC markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and Nanog). In an attempt to quantify the changes during stochastic differentiation of hESCs, we developed a robust and sensitive multimarker quantitative real-time polymerase chain reaction (QPCR) method. To maximize the sensitivity of the method, we measured the expression of up- and downregulated genes before and after differentiation of the hESCs. Out of the 12 genes assayed, we found it clearly sufficient to determine the relative differentiation state of the cells by calculating a collective expression index based on the mRNA levels of Oct-4, Nanog, Cripto, and (x-fetoprotein. We evaluated the method using different hESC lines maintained in either feeder-dependent or feeder-free culture conditions. The QPCR method is very flexible, and by appropriately selecting reporter genes, the method can be designed for various applications. The combination of QPCR with hESC-based technologies opens novel avenues for high-throughput analysis of hESCs in, for example, pharmacological and cytotoxicity screening. STEM CELLS 2005;23:1460-1467.
  •  
38.
  • Norrman, Karin, et al. (författare)
  • Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level.
  • 2013
  • Ingår i: Methods. - : Elsevier BV. - 1046-2023 .- 1095-9130. ; 59:1, s. 59-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of directed differentiation of pluripotent stem cells towards therapeutically relevant cell types, including pancreatic beta-cells and hepatocytes, depends on molecular markers and assays that resolve the signature of individual cells. Pancreas and liver both have a common origin of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were useful to monitor the temporal expression of genes involved in primitive streak formation and endoderm formation, while single-cell analysis allowed us to study cell culture heterogeneity and fingerprint individual cells. In addition, single-cell analysis revealed distinct gene expression patterns for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize cell types and subpopulations.
  •  
39.
  • Norrman, Karin, et al. (författare)
  • Quantitative comparison of constitutive promoters in human ES cells.
  • 2010
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.
  •  
40.
  • Nyeng, Pia, et al. (författare)
  • p120ctn-Mediated Organ Patterning Precedes and Determines Pancreatic Progenitor Fate
  • 2019
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 49:1, s. 9-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of how organ shape emerges and specifies cell fate is not understood. Pancreatic duct and endocrine lineages arise in a spatially distinct domain from the acinar lineage. Whether these lineages are pre-determined or settle once these niches have been established remains unknown. Here, we reconcile these two apparently opposing models, demonstrating that pancreatic progenitors re-localize to establish the niche that will determine their ultimate fate. We identify a p120ctn-regulated mechanism for coordination of organ architecture and cellular fate mediated by differential E-cadherin based cell sorting. Reduced p120ctn expression is necessary and sufficient to re-localize a subset of progenitors to the peripheral tip domain, where they acquire an acinar fate. The same mechanism is used re-iteratively during endocrine specification, where it balances the choice between the alpha and beta cell fates. In conclusion, organ patterning is regulated by p120ctn-mediated cellular positioning, which precedes and determines pancreatic progenitor fate. Nyeng et al. use live imaging to demonstrate that differential p120-catenin expression segregates pancreatic progenitor cells into fate-determining niches by differential surface tension. While cells with low expression move to the periphery to become acinar cells, cells with high expression remain in the center to become duct and endocrine cells.
  •  
41.
  • Olivecrona, Gunilla, et al. (författare)
  • Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia
  • 2010
  • Ingår i: Journal of Lipid Research. - New York : Rockefeller U.P.. - 0022-2275 .- 1539-7262. ; 51:6, s. 1535-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated a family from northern Sweden in which three of four siblings have congenital chylomicronemia. Lipoprotein lipase (LPL) activity and mass in pre- and post-heparin plasma were low, and LPL release into plasma after heparin injection was delayed. LPL activity and mass in adipose tissue biopsies appeared normal. [35S]Methionine incorporation studies on adipose tissue showed that newly synthesized LPL was normal in size and normally glycosylated. Breast milk from the affected female subjects contained normal to elevated LPL mass and activity levels. The milk had a lower than normal milk lipid content, and the fatty acid composition was compatible with the milk lipids being derived from de novo lipogenesis, rather than from the plasma lipoproteins. Given the delayed release of LPL into the plasma after heparin, we suspected that the chylomicronemia might be caused by mutations in GPIHBP1. Indeed, all three affected siblings were compound heterozygotes for missense mutations involving highly conserved cysteines in the Ly6 domain of GPIHBP1 (C65S and C68G). The mutant GPIHBP1 proteins reached the surface of transfected CHO cells but were defective in their ability to bind LPL (as judged by both cell-based and cell-free LPL binding assays). Thus, the conserved cysteines in the Ly6 domain are crucial for GPIHBP1 function.
  •  
42.
  • Olofsson, Charlotta S, 1971, et al. (författare)
  • Impaired insulin exocytosis in neural cell adhesion molecule-/- mice due to defective reorganization of the submembrane F-actin network.
  • 2009
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 150:7, s. 3067-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The neural cell adhesion molecule (NCAM) is required for cell type segregation during pancreatic islet organogenesis. We have investigated the functional consequences of ablating NCAM on pancreatic beta-cell function. In vivo, NCAM(-/-) mice exhibit impaired glucose tolerance and basal hyperinsulinemia. Insulin secretion from isolated NCAM(-/-) islets is enhanced at glucose concentrations below 15 mM but inhibited at higher concentrations. Glucagon secretion from pancreatic alpha-cells evoked by low glucose was also severely impaired in NCAM(-/-) islets. The diminution of insulin secretion is not attributable to defective glucose metabolism or glucose sensing (documented as glucose-induced changes in intracellular Ca(2+) and K(ATP)-channel activity). Resting K(ATP) conductance was lower in NCAM(-/-) beta-cells than wild-type cells, and this difference was abolished when F-actin was disrupted by cytochalasin D (1 muM). In wild-type beta-cells, the submembrane actin network disassembles within 10 min during glucose stimulation (30 mM), an effect not seen in NCAM(-/-) beta-cells. Cytochalasin D eliminated this difference and normalized insulin and glucagon secretion in NCAM(-/-) islets. Capacitance measurements of exocytosis indicate that replenishment of the readily releasable granule pool is suppressed in NCAM(-/-) alpha- and beta-cells. Our data suggest that remodeling of the submembrane actin network is critical to normal glucose regulation of both insulin and glucagon secretion.
  •  
43.
  • Semb, Henrik (författare)
  • Definitive endoderm: a key step in coaxing human embryonic stem cells into transplantable beta-cells.
  • 2008
  • Ingår i: Biochemical Society Transactions. - 0300-5127. ; 36:Pt 3, s. 272-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the Edmonton protocol, a number of patients with Type 1 diabetes mellitus have remained insulin-independent for prolonged periods of time. In spite of this success, transplantation of islets from cadaver donors will remain a therapy for very few patients owing to a lack of donors. Thus, if cell therapy should be widely available, it will require an unlimited source of cells to serve as a 'biological' insulin pump. At this time, the development of beta-cells from hESCs (human embryonic stem cells) has emerged as the most attractive alternative. It is envisioned that ultimate success of an in vitro approach to programme hESCs into beta-cells will depend on the ability, at least to a certain degree, to sequentially reproduce the individual steps that characterizes normal beta-cell ontogenesis during fetal pancreatic development, including definitive endoderm from which all gastrointestinal organs, including the pancreas, originate. In the present article, differentiation of hESCs into putative definitive endodermal cell types is reviewed.
  •  
44.
  • Semb, Henrik (författare)
  • Expandable endodermal progenitors: new tools to explore endoderm and its derivatives.
  • 2008
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 3:4, s. 355-356
  • Tidskriftsartikel (refereegranskat)abstract
    • In the two recent issues of Cell Stem Cell, Rossant and colleagues (Seguin et al., 2008) produced expandable endoderm from hESCs by constitutive expression of Sox transcription factors, while Brickman and associates (Morrison et al., 2008) used a reporter gene strategy to isolate replicating anterior definitive endoderm from mESCs.
  •  
45.
  •  
46.
  • Sjögren, Anita, 0, et al. (författare)
  • Human blastocysts for the development of embryonic stem cells
  • 2004
  • Ingår i: Reproductive BioMedicine Online. - 1472-6483 .- 1472-6491. ; 9:3, s. 326-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishment of human embryonic stem cells (hES) from surplus human IVF embryos has been successful when both fresh and frozen-thawed cleavage stage embryos have been cultured to the blastocyst stage. This study reports the characteristics of the starting material, the blastocysts, for hES cell lines that were first derived at the University of Gothenburg, Sahlgrenska University Hospital in 1999. Twenty-two hES cell lines were derived by Cellartis AB from 114 blastocysts, giving an overall success rate of 19.3%. The blastocysts from which the hES cell lines were established were of varying morphological quality, both fresh and frozen-thawed. Two techniques of hES establishment were applied, i.e. direct application of the blastocysts on feeder cells or the standard immunosurgery method. It was further found that the efficiency by which frozen-thawed embryos gave rise to new hES cell lines was 3.7 times better than with fresh surplus embryos. These findings suggest that frozen-thawed embryos are superior to fresh surplus human embryos in hES cell establishment, which also avoids specific ethical problems associated with embryo donation in a fresh IVF cycle.
  •  
47.
  • Ståhlberg, Anders, 1975, et al. (författare)
  • Properties of the reverse transcription reaction in mRNA quantification.
  • 2004
  • Ingår i: Clinical chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 50:3, s. 509-15
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In most measurements of gene expression, mRNA is first reverse-transcribed into cDNA. We studied the reverse transcription reaction and its consequences for quantitative measurements of gene expression. METHODS: We used SYBR green I-based quantitative real-time PCR (QPCR) to measure the properties of reverse transcription reaction for the beta-tubulin, glyceraldehyde-3-phosphate dehydrogenase, Glut2, CaV1D, and insulin II genes, using random hexamers, oligo(dT), and gene-specific reverse transcription primers. RESULTS: Experimental variation in reverse transcription-QPCR (RT-QPCR) was mainly attributable to the reverse transcription step. Reverse transcription efficiency depended on priming strategy, and the dependence was different for the five genes studied. Reverse transcription yields also depended on total RNA concentration. CONCLUSIONS: RT-QPCR gene expression measurements are comparable only when the same priming strategy and reaction conditions are used in all experiments and the samples contain the same total amount of RNA. Experimental accuracy is improved by running samples in (at least) duplicate starting with the reverse transcription reaction.
  •  
48.
  • Svensson, Per, 1975- (författare)
  • Functional analysis of Ipf1/Pdx1, MFng and Id during pancreatic growth and differentiation
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The pancreas is an endodermally derived organ consisting of three major cell lineages. The endocrine cells, organised into the Islets of Langerhans, regulate blood glucose homeostasis by producing and secreting hormones such as glucagon and insulin into the bloodstream. The major part of the pancreas consists however of acinar cells that produce digestive enzymes that are transported via a highly branched ductal system to the duodenum where they function in breakdown of food. Early in pancreas development a dorsal and ventral evagination of the foregut epithelium appear, resulting in the formation of the dorsal and ventral pancreatic bud. These pancreatic buds subsequently grow, branch and differentiate to form the mature pancreas via a process controlled by intrinsic factors, such as transcription factors, and extracellular signals. Insulin promoter factor 1 (Ipf1), also known as Pdx1 (for Pancreatic duodenal homeobox gene 1), is required for pancreas development. Although the evagination of pancreatic buds still occurs in Ipf1/Pdx1 mutant mice, the subsequent proliferation, branching and differentiation is impaired, resulting in complete pancreatic agenesis. Gene array profiling identified several candidate Ipf1/Pdx1 target genes, including FgfR2IIIb, ErbB3, Ptf1a/p48, Pax6 and Nkx6.1, in pancreatic progenitor cells. Together these genes provide a mechanistic explanation for the pancreatic growth arrest observed in Ipf1/Pdx1 deficient mice. In addition, Spondin1, which has not previously been described in the pancreas, was identified to be regulated by Ipf1/Pdx1. The spatial and temporal expression pattern of Spondin1 defines Spondin1 as a marker for early pancreatic progenitor cells. The Notch signalling pathway controls cell type specification and differentiation during pancreas development. The Fringe family of proteins have previously been shown to regulate Notch signalling by altering the interaction between Notch receptors and their ligands, hence affecting the cellular response. Manic Fringe (MFng) is transiently expressed in pancreatic pro-endocrine cells between E9.5 and E14.5. The expression of MFng is regulated by Ngn3, which may suggest a role for MFng in pro-endocrine cell maturation. The lack of a pancreatic phenotype in transgenic mice overexpressing MFng in the pancreatic epithelium and in MFng null mutant mice, however, provide evidence that MFng is dispensable for the specification, differentiation and function of the adult pancreas. Inhibitors of DNA binding (Id) proteins are generally known as inhibitors of differentiation, a feature they mainly perform by forming non-functional heterodimers with bHLH proteins, thereby inhibiting downstream targets of the bHLH proteins. Id proteins also promote cell proliferation by interacting with the cell cycle machinery. In the developing pancreas Id2 and Id3 are co-expressed in an overlapping manner during the period of massive proliferation and expansion of the pancreatic epithelium, suggestive of a role for the Id proteins during these processes. In addition, Id4 expression is also detected in the embryonic pancreas, albeit at lower levels. Gain- and loss- of- function analyses suggest however that specification, differentiation and function of the adult pancreas are largely independent of Id function.
  •  
49.
  • Wolfhagen Sand, Fredrik, et al. (författare)
  • Growth-limiting role of endothelial cells in endoderm development
  • 2011
  • Ingår i: Developmental Biology. - : Academic Press. - 0012-1606 .- 1095-564X. ; 352:2, s. 267-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.
  •  
50.
  • Xian, Xiaojie, 1971, et al. (författare)
  • Pericytes limit tumor cell metastasis.
  • 2006
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; 116:3, s. 642-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role for pericytes in limiting tumor cell metastasis. These data support a new model for how tumor cells trigger metastasis by perturbing pericyte-endothelial cell-cell interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 50
Typ av publikation
tidskriftsartikel (45)
doktorsavhandling (3)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Semb, Henrik (40)
Ståhlberg, Anders, 1 ... (8)
Semb, Henrik, 1959 (7)
Hyllner, Johan (5)
Ameri, Jacqueline (5)
Johansson, Jenny (5)
visa fler...
Håkansson, Joakim, 1 ... (5)
Heins, Nico (4)
Kesavan, Gokul (4)
Norrman, Karin (4)
Emanuelsson, Katarin ... (3)
Hanson, Charles, 195 ... (3)
Johannesson, Martina (3)
Bergh, Christina, 19 ... (3)
Strehl, Raimund (3)
Artner, Isabella (3)
Semb, Henrik, Profes ... (3)
Brolén, Gabriella (3)
Caisander, Gunilla (3)
Englund, Mikael C. O ... (3)
Tuomi, Tiinamaija (2)
Gerhardt, Holger, 19 ... (2)
Hernebring, Malin, 1 ... (2)
Nyström, Thomas, 196 ... (2)
Lindahl, Anders, 195 ... (2)
Lundin, Kersti, 1957 (2)
Ståhlberg, Anders (2)
Carlsson, Per-Ola (2)
Andersson, Katarina (2)
Johansson, Jenny K. (2)
Noaksson, Karin (2)
Ellerström, Catharin ... (2)
Edsbagge, Josefina (2)
Edsbagge, Josefina, ... (2)
Esni, Farzad, 1969 (2)
Radice, Glenn L. (2)
Fischer, Yvonne (2)
Xian, Xiaojie (2)
Hess, Katja (2)
Greiner, Thomas (2)
Tonning, Anna, 1978 (2)
Kettunen, Jarno L.T. (2)
Hermann, Florian M. (2)
Kjaergaard, Maya Fri ... (2)
Tian, Chenglei (2)
Tiemann, Ulf (2)
Jackson, Abigail (2)
Kraft, Maria (2)
Elfving, Iina M. (2)
Novak, Ivana (2)
visa färre...
Lärosäte
Lunds universitet (38)
Göteborgs universitet (20)
Karolinska Institutet (6)
Umeå universitet (3)
Kungliga Tekniska Högskolan (2)
Uppsala universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (50)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (38)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy