SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Semple CA) "

Sökning: WFRF:(Semple CA)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Forrest, ARR, et al. (författare)
  • A promoter-level mammalian expression atlas
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Costa, Y, et al. (författare)
  • Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis
  • 2005
  • Ingår i: Journal of cell science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 118:12Pt 12, s. 2755-2762
  • Tidskriftsartikel (refereegranskat)abstract
    • Completion of meiosis in mammals depends on the formation of the synaptonemal complex, a tripartite structure that physically links homologous chromosomes during prophase I. Several components of the synaptonemal complex are known, including constituents of the cohesin core, the axial/lateral element and the transverse filaments. No protein has previously been identified as an exclusive component of the central element. Mutations in some synaptonemal-complex proteins results in impaired meiosis. In humans, cases of male infertility have been associated with failure to build the synaptonemal complex. To search for new components of the meiotic machinery, we have used data from microarray expression profiling and found two proteins localising solely to the central element of the mammalian synaptonemal complex. These new proteins, SYCE1 and CESC1, interact with the transverse filament protein SYCP1, and their localisation to the central element appears to depend on recruitment by SYCP1. This suggests a role for SYCE1 and CESC1 in synaptonemal-complex assembly, and perhaps also stability and recombination.
  •  
12.
  • Kousathanas, A, et al. (författare)
  • Whole-genome sequencing reveals host factors underlying critical COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 607:7917, s. 97-
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
  •  
13.
  • Vacca, A, et al. (författare)
  • Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli
  • 2018
  • Ingår i: Open biology. - : The Royal Society. - 2046-2441. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The promoters of immediate early genes (IEGs) are rapidly activated in response to an external stimulus. These genes, also known as primary response genes, have been identified in a range of cell types, under diverse extracellular signals and using varying experimental protocols. Whereas genomic dissection on a case-by-case basis has not resulted in a comprehensive catalogue of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE (cap analysis of gene expression) time course datasets reveals successive waves of promoter activation in IEGs, recapitulating known relationships between cell types and stimuli: we obtain a set of 57 (42 protein-coding) candidate IEGs possessing promoters that consistently drive a rapid but transient increase in expression over time. These genes show significant enrichment for known IEGs reported previously, pathways associated with the immediate early response, and include a number of non-coding RNAs with roles in proliferation and differentiation. Surprisingly, we also find strong conservation of the ordering of activation for these genes, such that 77 pairwise promoter activation orderings are conserved. Using the leverage of comprehensive CAGE time series data across cell types, we also document the extensive alternative promoter usage by such genes, which is likely to have been a barrier to their discovery until now. The common activation ordering of the core set of early-responding genes we identify may indicate conserved underlying regulatory mechanisms. By contrast, the considerably larger number of transiently activated genes that are specific to each cell type and stimulus illustrates the breadth of the primary response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy