SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sen Sayan) "

Sökning: WFRF:(Sen Sayan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Yousif, et al. (författare)
  • Coronary Hemodynamics in Patients With Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement : Implications for Clinical Indices of Coronary Stenosis Severity
  • 2018
  • Ingår i: JACC: Cardiovascular Interventions. - : Elsevier BV. - 1876-7605 .- 1936-8798. ; 11:20, s. 2019-2031
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: In this study, a systematic analysis was conducted of phasic intracoronary pressure and flow velocity in patients with severe aortic stenosis (AS) and coronary artery disease, undergoing transcatheter aortic valve replacement (TAVR), to determine how AS affects: 1) phasic coronary flow; 2) hyperemic coronary flow; and 3) the most common clinically used indices of coronary stenosis severity, instantaneous wave-free ratio and fractional flow reserve.BACKGROUND: A significant proportion of patients with severe aortic stenosis (AS) have concomitant coronary artery disease. The effect of the valve on coronary pressure, flow, and the established invasive clinical indices of stenosis severity have not been studied.METHODS: Twenty-eight patients (30 lesions, 50.0% men, mean age 82.1 ± 6.5 years) with severe AS and coronary artery disease were included. Intracoronary pressure and flow assessments were performed at rest and during hyperemia immediately before and after TAVR.RESULTS: Flow during the wave-free period of diastole did not change post-TAVR (29.78 ± 14.9 cm/s vs. 30.81 ± 19.6 cm/s; p = 0.64). Whole-cycle hyperemic flow increased significantly post-TAVR (33.44 ± 13.4 cm/s pre-TAVR vs. 40.33 ± 17.4 cm/s post-TAVR; p = 0.006); this was secondary to significant increases in systolic hyperemic flow post-TAVR (27.67 ± 12.1 cm/s pre-TAVR vs. 34.15 ± 17.5 cm/s post-TAVR; p = 0.02). Instantaneous wave-free ratio values did not change post-TAVR (0.88 ± 0.09 pre-TAVR vs. 0.88 ± 0.09 post-TAVR; p = 0.73), whereas fractional flow reserve decreased significantly post-TAVR (0.87 ± 0.08 pre-TAVR vs. 0.85 ± 0.09 post-TAVR; p = 0.001).CONCLUSIONS: Systolic and hyperemic coronary flow increased significantly post-TAVR; consequently, hyperemic indices that include systole underestimated coronary stenosis severity in patients with severe AS. Flow during the wave-free period of diastole did not change post-TAVR, suggesting that indices calculated during this period are not vulnerable to the confounding effect of the stenotic aortic valve.
  •  
2.
  • Ahmad, Yousif, et al. (författare)
  • Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses : A Multicenter Study Using Intracoronary Pressure and Flow
  • 2019
  • Ingår i: Circulation. Cardiovascular Interventions. - 1941-7632. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. METHODS: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). RESULTS: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s-1 versus post-TAVI 3.04±1.6 mm Hg·cm·s-1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. CONCLUSIONS: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease.
  •  
3.
  • Escaned, Javier, et al. (författare)
  • Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology
  • 2023
  • Ingår i: EuroIntervention. - : Europa Digital & Publishing. - 1774-024X .- 1969-6213. ; 19:6, s. 464-
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical value of fractional flow reserve and non-hyperaemic pressure ratios are well established in determining an indication for percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). In addition, over the last 5 years we have witnessed a shift towards the use of physio-logy to enhance procedural planning, assess post-PCI functional results, and guide PCI optimisation. In this regard, clinical studies have reported compelling data supporting the use of longitudinal vessel analysis, obtained with pressure guidewire pullbacks, to better understand how obstructive CAD contributes to myocardial ischaemia, to establish the likelihood of functionally successful PCI, to identify the presence and location of residual flow-limiting stenoses and to predict long-term outcomes. The introduction of new functional coronary angiography tools, which merge angiographic information with fluid dynamic equations to deliver information equivalent to intracoronary pressure measurements, are now available and potentially also applicable to these endeavours. Furthermore, the ability of longitudinal vessel analysis to predict the functional results of stenting has played an integral role in the evolving field of simulated PCI. Nevertheless, it is important to have an awareness of the value and challenges of physiology-guided PCI in specific clinical and anatomical contexts. The main aim of this European Association of Percutaneous Cardiovascular Interventions clinical consensus statement is to offer up-to-date evidence and expert opin-ion on the use of applied coronary physiology for procedural PCI planning, disease pattern recognition and post-PCI optimisation.
  •  
4.
  • Escaned, Javier, et al. (författare)
  • Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes
  • 2018
  • Ingår i: JACC. - : Elsevier. - 1936-8798 .- 1876-7605. ; 11:15, s. 1437-1449
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES The aim of this study was to investigate the clinical outcomes of patients deferred from coronary revascularization on the basis of instantaneous wave-free ratio (iFR) or fractional flow reserve (FFR) measurements in stable angina pectoris (SAP) and acute coronary syndromes (ACS). BACKGROUND Assessment of coronary stenosis severity with pressure guidewires is recommended to determine the need for myocardial revascularization. METHODS The safety of deferral of coronary revascularization in the pooled per-protocol population (n = 4,486) of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation) and iFR-SWEDEHEART (Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve in Patients With Stable Angina Pectoris or Acute Coronary Syndrome) randomized clinical trials was investigated. Patients were stratified according to revascularization decision making on the basis of iFR or FFR and to clinical presentation (SAP or ACS). The primary endpoint was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. RESULTS Coronary revascularization was deferred in 2,130 patients. Deferral was performed in 1,117 patients (50%) in the iFR group and 1,013 patients (45%) in the FFR group (p < 0.01). At 1 year, the MACE rate in the deferred population was similar between the iFR and FFR groups (4.12% vs. 4.05%; fully adjusted hazard ratio: 1.13; 95% confidence interval: 0.72 to 1.79; p = 0.60). A clinical presentation with ACS was associated with a higher MACE rate compared with SAP in deferred patients (5.91% vs. 3.64% in ACS and SAP, respectively; fully adjusted hazard ratio: 0.61 in favor of SAP; 95% confidence interval: 0.38 to 0.99; p = 0.04). CONCLUSIONS Overall, deferral of revascularization is equally safe with both iFR and FFR, with a low MACE rate of about 4%. Lesions were more frequently deferred when iFR was used to assess physiological significance. In deferred patients presenting with ACS, the event rate was significantly increased compared with SAP at 1 year. (C) 2018 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
  •  
5.
  • Götberg, Matthias, et al. (författare)
  • The Evolving Future of Instantaneous Wave-Free Ratio and Fractional Flow Reserve
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 70:11, s. 1379-1402
  • Forskningsöversikt (refereegranskat)abstract
    • In this review, the authors reflect upon the role of coronary physiology in the modern management of coronary artery disease. They critically appraise the scientific background of the instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR), from early experimental studies to validation studies against indexes of ischemia, to clinical trials assessing outcome. At this important juncture for the field, the authors make predictions for the future of physiological stenosis assessment, outlining developments for both iFR and FFR in new clinical domains beyond the confines of stable angina. With a focus on the evolving future of iFR and FFR, the authors describe how physiological assessment with iFR may advance its application from simply justifying to guiding revascularization.
  •  
6.
  • Petraco, Ricardo, et al. (författare)
  • Real-time use of instantaneous wave-free ratio: Results of the ADVISE in-practice: An international, multicenter evaluation of instantaneous wave-free ratio in clinical practice
  • 2014
  • Ingår i: American Heart Journal. - : Elsevier BV. - 1097-6744 .- 0002-8703. ; 168:5, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives To evaluate the first experience of real-time instantaneous wave-free ratio (iFR) measurement by clinicians. Background The iFR is a new vasodilator-free index of coronary stenosis severity, calculated as a trans-lesion pressure ratio during a specific period of baseline diastole, when distal resistance is lowest and stable. Because all previous studies have calculated iFR offline, the feasibility of real-time iFR measurement has never been assessed. Methods Three hundred ninety-two stenoses with angiographically intermediate stenoses were included in this multicenter international analysis. Instantaneous wave free ratio and fractional flow reserve (FFR) were performed in real time on commercially available consoles. The classification agreement of coronary stenoses between iFR and FFR was calculated. Results Instantaneous wave-free ratio and FFR maintain a close level of diagnostic agreement when both are measured by clinicians in real time (for a clinical 0.80 FFR cutoff: area under the receiver operating characteristic curve [ROCAUC] 0.87, classification match 80%, and optimal iFR cutoff 0.90; for a ischemic 0.75 FFR cutoff: iFR ROCAUC 0.90, classification match 88%, and optimal iFR cutoff 0.85; if the FFR 0.75-0.80 gray zone is accounted for: ROCAUC 0.93, classification match 92%). When iFR and FFR are evaluated together in a hybrid decision-making strategy, 61% of the population is spared from vasodilator while maintaining a 94% overall agreement with FFR lesion classification. Conclusion When measured in real time, iFR maintains the close relationship to FFR reported in offline studies. These findings confirm the feasibility and reliability of real-time iFR calculation by clinicians.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy