SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sergeev V.A) "

Sökning: WFRF:(Sergeev V.A)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
2.
  • Apatenkov, S. V., et al. (författare)
  • Conjugate observation of sharp dynamical boundary in the inner magnetosphere by Cluster and DMSP spacecraft and ground network
  • 2008
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 26:9, s. 2771-2780
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate an unusual sharp boundary separating two plasma populations (inner magnetospheric plasma with high fluxes of energetic particles and plasma sheet) observed by the Cluster quartet near its perigee on 16 December 2003. Cluster was in a pearl-on-string configuration at 05:00 MLT and mapped along magnetic field lines to similar to 8-9 R-E in the equatorial plane. It was conjugate to the MIRACLE network and the DMSP F16 spacecraft passed close to Cluster footpoint. The properties of the sharp boundary, repeatedly crossed 7 times by five spacecraft during similar to 10 min, are: (1) upward FAC sheet at the boundary with similar to 30 nA/m(2) current density at Cluster and similar to 2000 nA/m(2) at DMSP; (2) the boundary had an embedded layered structure with different thickness scales, the electron population transition was at similar to 20 km scale at Cluster (<7 km at DMSP), proton population had a scale similar to 100 km, while the FAC sheet thickness was estimated to be similar to 500 km at Cluster (similar to 100 km at DMSP); (3) the boundary propagated in the earthward-eastward direction at similar to 8 km/s in situ (equatorward-eastward similar to 0.8 km/s in ionosphere), and then decelerated and/or stopped. We discuss the boundary formation by the collision of two different plasmas which may include dynamical three-dimensional field-aligned current loops.
  •  
3.
  • Apatenkov, S. V., et al. (författare)
  • Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere
  • 2007
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 25:3, s. 801-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Addressing the origin of the energetic particle injections into the inner magnetosphere, we investigate the 23 February 2004 substorm using a favorable constellation of four Cluster (near perigee), LANL and Geotail spacecraft. Both an energy-dispersed and a dispersionless injection were observed by Cluster crossing the plasma sheet horn, which mapped to 9-12 R-E in the equatorial plane close to the midnight meridian. Two associated narrow equatorward auroral tongues/streamers propagating from the oval poleward boundary could be discerned in the global images obtained by IMAGE/WIC. As compared to the energy-dispersed event, the dispersionless injection front has important distinctions consequently repeated at 4 spacecraft: a simultaneous increase in electron fluxes at energies similar to 1.300 keV, similar to 25 nT increase in B-Z and a local increase by a factor 1.5-1.7 in plasma pressure. The injected plasma was primarily of solar wind origin. We evaluated the change in the injected flux tube configuration during the dipolarization by fitting flux increases observed by the PEACE and RAPID instruments, assuming adiabatic heating and the Liouville theorem. Mapping the locations of the injection front detected by the four spacecraft to the equatorial plane, we estimated the injection front thickness to be similar to 1 R-E and the earthward propagation speed to be similar to 200-400km/s (at 9-12 RE). Based on observed injection properties, we suggest that it is the underpopulated flux tubes (bubbles with enhanced magnetic field and sharp inner front propagating earthward), which accelerate and transport particles into the strong-field dipolar region.
  •  
4.
  • Fu, H. S., et al. (författare)
  • Pitch angle distribution of suprathermal electrons behind dipolarization fronts : A statistical overview
  • 2012
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 117:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the pitch angle distribution (PAD) of suprathermal electrons (> 40 keV) inside the flux pileup regions (FPRs) that are located behind the dipolarization fronts (DFs), in order to better understand the particle energization mechanisms operating therein. The 303 earthward-propagating DFs observed during 9 years (2001-2009) by Cluster 1 have been analyzed and divided into two groups according to the differential fluxes of the > 40 keV electrons inside the FPR. One group, characterized by the low flux (F < 500/cm(2) , s . sr . keV), consists of 153 events and corresponds to a broad distribution of IMF Bz components. The other group, characterized by the high flux (F >= 500/cm(2) . s . sr . keV), consists of 150 events and corresponds to southward IMF Bz components. Only the high-flux group is considered to investigate the PAD of the > 40 keV electrons as the low-flux situation may lead to large uncertainties in computing the anisotropy factor that is defined as A = F-perpendicular to/F-parallel to - 1 for F-perpendicular to > F-parallel to, and A = -F-parallel to/F-perpendicular to + 1 for F-perpendicular to < F-parallel to. We find that, among the 150 events, 46 events have isotropic distribution (vertical bar A vertical bar <= 0.5); 60 events have perpendicular distribution (A > 0.5), and 44 events have field-aligned distribution inside the FPR (A < -0.5). The perpendicular distribution appears mainly inside the growing FPR, where the flow velocity is increasing and the local flux tube is compressed. The field-aligned distribution occurs mainly inside the decaying FPR, where the flow velocity is decreasing and the local flux tube is expanding. Inside the steady FPR, we observed primarily the isotropic distribution of suprathermal electrons. This statistical result confirms the previous case study and gives an overview of the PAD of suprathermal electrons behind DFs.
  •  
5.
  • Hasegawa, H., et al. (författare)
  • Reconstruction of a bipolar magnetic signature in an earthward jet in the tail : Flux rope or 3D guide-field reconnection?
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A11, s. A11206-
  • Tidskriftsartikel (refereegranskat)abstract
    • Southward-then-northward magnetic perturbations are often seen in the tail plasma sheet, along with earthward jets, but the generation mechanism of such bipolar B-z ( magnetic flux rope created through multiple X-line reconnection, transient reconnection, or else) has been controversial. At similar to 2313 UT on 13 August 2002, Cluster encountered a bipolar B-z at the leading edge of an earthward jet, with one of the four spacecraft in the middle of the current sheet. Application to this bipolar signature of Grad-Shafranov ( GS) reconstruction, the technique for recovery of two-dimensional ( 2D) magnetohydrostatic structures, suggests that a flux rope with diameter of similar to 2 R-E was embedded in the jet. To investigate the validity of the GS results, the technique is applied to synthetic data from a three-dimensional ( 3D) MHD simulation, in which a bipolar B-z can be produced through localized ( 3D) reconnection in the presence of guide field B-y ( Shirataka et al., 2006) without invoking multiple X-lines. A flux rope-type structure, which does not in fact exist in the simulation, is reconstructed but with a shape elongated in the jet direction. Unambiguous identification of a mechanism that leads to an observed bipolar B-z thus seems difficult based on the topological property in the GS maps. We however infer that a flux rope was responsible for the bipolar pulse in this particular Cluster event, because the recovered magnetic structure is roughly circular, suggesting a relaxed and minimum energy state. Our results also indicate that one has to be cautious about interpretation of some ( e. g., force-free, or magnetohydrostatic) model-based results.
  •  
6.
  •  
7.
  •  
8.
  • Nakamura, R., et al. (författare)
  • Thin Current Sheet Behind the Dipolarization Front
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a unique conjugate observation of fast flows and associated current sheet disturbances in the near-Earth magnetotail by MMS (Magnetospheric Multiscale) and Cluster preceding a positive bay onset of a small substorm at similar to 14:10 UT, September 8, 2018. MMS and Cluster were located both at X similar to -14 R-E. A dipolarization front (DF) of a localized fast flow was detected by Cluster and MMS, separated in the dawn-dusk direction by similar to 4 R-E,R- almost simultaneously. Adiabatic electron acceleration signatures revealed from the comparison of the energy spectra confirm that both spacecraft encounter the same DF. We analyzed the change in the current sheet structure based on multi-scale multi-point data analysis. The current sheet thickened during the passage of DF, yet, temporally thinned subsequently associated with another flow enhancement centered more on the dawnward side of the initial flow. MMS and Cluster observed intense perpendicular and parallel current in the off-equatorial region mainly during this interval of the current sheet thinning. Maximum field-aligned currents both at MMS and Cluster are directed tailward. Detailed analysis of MMS data showed that the intense field-aligned currents consisted of multiple small-scale intense current layers accompanied by enhanced Hall-currents in the dawn-dusk flow-shear region. We suggest that the current sheet thinning is related to the flow bouncing process and/or to the expansion/activation of reconnection. Based on these mesoscale and small-scale multipoint observations, 3D evolution of the flow and current-sheet disturbances was inferred preceding the development of a substorm current wedge.
  •  
9.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
10.
  • Nikolaev, A. V., et al. (författare)
  • A quantitative study of magnetospheric magnetic field line deformation by a two-loop substorm current wedge
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:4, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • Substorm current wedge (SCW) formation is associated with global magnetic field reconfiguration during substorm expansion. We combine a two-loop model SCW (SCW2L) with a background magnetic field model to investigate distortion of the ionospheric footpoint pattern in response to changes of different SCW2L parameters. The SCW-related plasma sheet footprint shift results in formation of a pattern resembling an auroral bulge, the poleward expansion of which is controlled primarily by the total current in the region 1 sense current loop (I-1). The magnitude of the footprint latitudinal shift may reach similar to 10 degrees corrected geomagnetic latitude (CGLat) during strong sub-storms (I-1 = 2 MA). A strong helical magnetic field around the field-aligned current generates a surge-like region with embedded spiral structures, associated with a westward traveling surge (WTS) at the western end of the SCW. The helical field may also contribute to rotation of the ionospheric projection of narrow plasma streams (auroral streamers). Other parameters, including the total current in the second (region 2 sense) loop, were found to be of secondary importance. Analyzing two consecutive dipolarizations on 17 March 2010, we used magnetic variation data obtained from a dense midlatitude ground network and several magnetospheric spacecraft, as well as the adaptive AM03 model, to specify SCW2L parameters, which allowed us to predict the magnitude of poleward auroral expansion. Auroral observations made during the two substorm activations demonstrate that the SCW2L combined with the AM03 model nicely describes the azimuthal progression and the observed magnitude of the auroral expansion. This finding indicates that the SCW-related distortions are responsible for much of the observed global development of bright auroras.
  •  
11.
  • Palin, Laurianne, et al. (författare)
  • Modulation of the substorm current wedge by bursty bulk flows : 8 September 2002- Revisited
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:5, s. 4466-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate formation mechanism of the substorm current wedge (SCW) remains to date unclear. In this study, we investigate its relationship to plasma flows at substorm onset and throughout the following expansion phase. We revisit the case of 8 September 2002, which has been defined as one of the best textbook examples of a substorm because of its excellent coverage by both spacecraft in the magnetotail and ground-based observatories. We found that a dense sequence of arrival of nightside flux transfer events (NFTEs; which can be understood as the lobe magnetic signature due to a bursty bulk flow travelling earthward in the central plasma sheet) in the near-Earth tail leads to a modulation (and further step-like builtup) of the SCW intensity during the substorm expansion phase. In addition, we found that small SCWs are created also during the growth phase of the event in association with another less intense sequence of NFTEs. The differences between the sequence of NFTEs in the growth and expansion phase are discussed. We conclude that the envelope of the magnetic disturbances which we typically refer to as an intense magnetic substorm is the result of a group or sequence of more intense and more frequent NFTEs.
  •  
12.
  • Sergeev, V. A., et al. (författare)
  • MMS Observations of Reconnection Separatrix Region in the Magnetotail at Different Distances From the Active Neutral X-Line
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The region surrounding the reconnection separatrix consists of many particle and wave transient features (electron, cold and hot ion beams, Hall E&B fields, kinetic Alfven, LH, etc. waves) whose pattern and parameters may vary depending on the distance from active neutral line. We study nine quick MMS entries into the plasma sheet boundary layer (PSBL) from the tail lobe to address the meso-scale pattern and other characteristics of phenomena for active separatrix crossings as deduced from particle observations. The outermost thin layer (a fraction of ion inertial scale, d(i)) of low-density plasma consists of accelerated electron beams and lobe cold ions and displays density depletions (EBL region). It is followed by hot proton beam (PBL region) in which the plasma density grows from lobe-like towards plasma sheet-like values; the beam energy-dispersion is used to estimate the distance from the active neutral line. Thin (usually <= d(i)) region containing intense Hall-like Ez perturbations (HR) usually overlaps with EBL and PBL regions. It often includes correlated B perturbations suggesting the Alfven wave-related transport from the reconnection source; the estimated Alfvenic ratio delta E/(V-A delta B) varied between 0.3 and 1.3 in studied examples. The HR is associated with profound plasma property changes, including the heating of cold ion beams in its innermost part, it hosts intense structured field-aligned currents and intense E-field fluctuations. Surprisingly, most of abovementioned findings are valid for crossings observed at large distances from the reconnection region (exceeding a few tens Re or >100 d(i)) except for longer time-scales and larger spatial scales of the pattern.
  •  
13.
  • Sergeev, V. A., et al. (författare)
  • Substorm-Related Near-Earth Reconnection Surge : Combining Telescopic and Microscopic Views
  • 2019
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 46:12, s. 6239-6247
  • Tidskriftsartikel (refereegranskat)abstract
    • A strong ~11-min-long surge of the lobe reconnection was observed during a substorm on the tailward side of the near-Earth neutral line. In the southern lobe near the reconnection separatrix the MMS spacecraft observed short-duration earthward electron beams providing the local Hall current, tailward propagating Alfven wave (AW) bursts with Poynting flux up to 10−4 W/m2, and large-amplitude E field spikes (e-holes) and low hybrid waves. The reconnection surge was accompanied by substorm current wedge formation and fast poleward expansion of auroral bulge-related westward electrojet in the conjugate ionosphere. During its meridional crossing above the expanding bulge the Metop-2 spacecraft observed an intense energetic precipitation spike near the expected X line foot point and confirmed the dipolarized character of magnetic field lines inside of the bulge. Globally the observed average reconnection rate (<Ey > ~3.3 mV/m) was sufficient to produce the magnetic flux increase in the bulge, associated with observed fast poleward expansion (about 6° latitude in 5 min).
  •  
14.
  • Skripnyak, V. A., et al. (författare)
  • Strength and Plasticity of Fe-Cr Alloys
  • 2016
  • Ingår i: ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016. - : AMER INST PHYSICS. - 9780735414457
  • Konferensbidrag (refereegranskat)abstract
    • High-chromium steels are attractive as promising structural materials for applications in nuclear facilities. Using the multilevel modeling, yield stress values of precipitation-hardened Fe-Cr steels are predicted in the temperature range up to 1115 K and pressures up to 10 GPa. The adiabatic curve obtained demonstrates a good correlation with the experimental data for a Fe-Cr-Ni alloy in the pressure range up to 10 GPa.
  •  
15.
  • Varsani, A., et al. (författare)
  • Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 10891-10909
  • Tidskriftsartikel (refereegranskat)abstract
    • During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R-E.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy