SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sethi Tariq) "

Sökning: WFRF:(Sethi Tariq)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Delaine, Tamara, et al. (författare)
  • Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition
  • 2016
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227. ; 17:18, s. 1759-1770
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.
  •  
3.
  • Fuhlbrigge, Anne L., et al. (författare)
  • A novel endpoint for exacerbations in asthma to accelerate clinical development : A post-hoc analysis of randomised controlled trials
  • 2017
  • Ingår i: The Lancet Respiratory Medicine. - 2213-2600. ; 5:7, s. 577-590
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Occurrence of severe asthma exacerbations are the cornerstone of the evaluation of asthma management, but severe asthma exacerbations are rare events. Therefore, trials that assess drug efficacy on exacerbations are done late in clinical development programmes. We aimed to establish an endpoint capturing clinically relevant deteriorations (diary events) that, when combined with severe exacerbations, create a composite outcome (CompEx). CompEx needs to strongly mirror results seen with the severe exacerbation-validated outcome, to allow the design of clinical trials of shorter duration and that include fewer patients than trials assessing severe exacerbations. Methods: Data from 12 asthma trials of 6 months or 12 months duration and, with standardised collection of exacerbations and diary card variables, were used to construct and test CompEx. The study populations had a mean age of 35-53 years, 59-69% were female, and had a mean FEV1 percentage of predicted normal of 63-84%. With data from five trials, we established a series of diary events based on peak expiratory flow (P), reliever use (R), symptoms (S), awakenings (A), and threshold values for change from baseline and slopes to assess trends. For the development phase, we evaluated different variable combinations and deterioration criteria to select the most robust algorithm to define a diary event for the composite outcome. We defined a composite outcome, CompEx, as first occurrence of a diary event or a severe exacerbation. We assessed the performance of CompEx in seven trials by comparing the event frequency, treatment effect (hazard ratio; HR), and the sample size needed for future trials for the CompEx versus episodes of severe exacerbations. Findings: CompEx (based on PRS) was the algorithm that best fulfilled our two-set criteria. When censored at 3 months, CompEx resulted in 2·8 times more events than severe exacerbations, and while preserving the treatment effect observed on severe exacerbations (CompEx over severe exacerbation average HR 1·01). The increased number of events, together with the sustained treatment effect, resulted in a large net gain in power, with a 67% mean reduction in the number of patients required in a drug trial for severe exacerbations. In six of seven comparisons tested, CompEx reduced the sample size needed by at least 50%. Validation of independent test populations confirmed the ability of CompEx to increase event frequencies, preserve treatment effect, and reduce the number of patients needed. Interpretation: CompEx is a composite outcome for evaluation of new asthma therapies. CompEx allows design of shorter trials that require fewer patients than studies of severe exacerbations, while preserving the ability to show a treatment effect compared with severe exacerbations. Funding: AstraZeneca.
  •  
4.
  • Hirani, Nikhil, et al. (författare)
  • Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 57:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139: placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression.
  •  
5.
  • Humphries, Duncan C., et al. (författare)
  • Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1–30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.
  •  
6.
  • MacKinnon, Alison C, et al. (författare)
  • Regulation of alternative macrophage activation by galectin-3
  • 2008
  • Ingår i: Journal of Immunology. - 1550-6606. ; 180:4, s. 2650-2658
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative macrophage activation is implicated in diverse disease pathologies such as asthma, organ fibrosis, and granulomatous diseases, but the mechanisms underlying macrophage programming are not fully understood. Galectin-3 is a carbohydrate-binding lectin present on macrophages. We show that disruption of the galectin-3 gene in 129sv mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and recruited peritoneal macrophages in vivo without affecting IFN-gamma/LPS-induced classical activation or IL-10-induced deactivation. IL-4-mediated alternative macrophage activation is inhibited by siRNA-targeted deletion of galectin-3 or its membrane receptor CD98 and by inhibition of PI3K. Increased galectin-3 expression and secretion is a feature of alternative macrophage activation. IL-4 stimulates galectin-3 expression and release in parallel with other phenotypic markers of alternative macrophage activation. By contrast, classical macrophage activation with LPS inhibits galectin-3 expression and release. Galectin-3 binds to CD98, and exogenous galectin-3 or cross-linking CD98 with the mAb 4F2 stimulates PI3K activation and alternative activation. IL-4-induced alternative activation is blocked by bis-(3-deoxy-3-(3-methoxybenzamido)-beta-D-galactopyranosyl) sulfane, a specific inhibitor of extracellular galectin-3 carbohydrate binding. These results demonstrate that a galectin-3 feedback loop drives alternative macrophage activation. Pharmacological modulation of galectin-3 function represents a novel therapeutic strategy in pathologies associated with alternatively activated macrophages.
  •  
7.
  • MacKinnon, Alison C., et al. (författare)
  • Regulation of Transforming Growth Factor-beta 1-driven Lung Fibrosis by Galectin-3
  • 2012
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1535-4970. ; 185:5, s. 537-546
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a beta-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. Objectives: To examine the role of galectin-3 in pulmonary fibrosis. Methods: We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF. Measurements and Main Results: Transforming growth factor (TGF)-beta and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-beta 1 induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of beta-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin -3, TD139, blocked TGF-beta-induced beta-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that. galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF. Conclusions: This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF.
  •  
8.
  • Mackinnon, Alison, et al. (författare)
  • Design, synthesis, And applications of galectin modulators in human health
  • 2014
  • Ingår i: Carbohydrates as Drugs. - Cham : Springer International Publishing. - 1862-247X .- 1862-2461. - 9783319086743 - 9783319345376 - 9783319086750 ; , s. 95-122
  • Bokkapitel (refereegranskat)abstract
    • Over the last decade, the family of galectin proteins has been identified as key regulators of important biological processes. They bind β-D-galactopyranoside residues in glycoconjugates, and by presenting multiple binding sites, within one galectin or by forming dimers or multimers, they can cross-link glycoproteins and form galectin-glycoprotein lattices. Such lattices formed on the cell surface or in vesicles have been shown to control, for example, surface residence time and signaling by receptors. Hence, compounds modulating galectin binding to their glycoprotein ligands are of potential clinical interest. This chapter describes the design and development of disubstituted thiodigalactoside derivatives that form optimal interactions with the galectin-3 binding site resulting in double-digit nanomolar affinities. Studies are discussed in which such galectin-3-modulating compounds have been important in elucidating galectin-3 mechanisms, including galectin-3 trafficking, cancer, inflammation, fibrosis, and angiogenesis. Medically relevant models using the galectin-3 modulators in characterizing macrophage alternative activation and chronic inflammation, myofibroblast activation and fibrosis, and ocular angiogenesis are discussed in more detail. In summary, the high galectin-3 affinity and definitive effects in relevant models of the disubstituted thiodigalactosides identify them as promising as lead compounds for drug development, albeit leaving a challenge in terms of optimizing PK/ADME properties.
  •  
9.
  • Rajput, Vishal K., et al. (författare)
  • A Selective Galactose–Coumarin-Derived Galectin-3 Inhibitor Demonstrates Involvement of Galectin-3-glycan Interactions in a Pulmonary Fibrosis Model
  • 2016
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 59:17, s. 8141-8147
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of doubly 3-O-coumarylmethyl-substituted thiodigalactosides from bis-3-O-propargyl-thiodigalactoside resulted in highly selective and high affinity galectin-3 inhibitors. Mutant studies, structural analysis, and molecular modeling revealed that the coumaryl substituents stack onto arginine side chains. One inhibitor displayed efficacy in a murine model of bleomycin-induced lung fibrosis similar to that of a known nonselective galectin-1/galectin-3 inhibitor, which strongly suggests that blocking galectin-3 glycan recognition is an important antifibrotic drug target.
  •  
10.
  • Vuong, Lynda, et al. (författare)
  • An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade
  • 2019
  • Ingår i: Cancer Research. - 0008-5472. ; 79:7, s. 1480-1492
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination therapy approach is required to improve tumor immune infiltration and patient response to immune checkpoint inhibitors that target negative regulatory receptors. Galectin-3 is a β-galactoside-binding lectin that is highly expressed within the tumor microenvironment of aggressive cancers and whose expression correlates with poor survival particularly in patients with non-small cell lung cancer (NSCLC). To examine the role of galectin-3 inhibition in NSCLC, we tested the effects of galectin-3 depletion using genetic and pharmacologic approaches on syngeneic mouse lung adenocarcinoma and human lung adenocarcinoma xenografts. Galectin-3-/- mice developed significantly smaller and fewer tumors and metastases than syngeneic C57/ Bl6 wild-type mice. Macrophage ablation retarded tumor growth, whereas reconstitution with galectin-3-positive bone marrow restored tumor growth in galectin-3-/- mice, indicating that macrophages were a major driver of the antitumor response. Oral administration of a novel small molecule galectin-3 inhibitor GB1107 reduced human and mouse lung adenocarcinoma growth and blocked metastasis in the syngeneic model. Treatment with GB1107 increased tumor M1 macrophage polarization and CD8 + T-cell infiltration. Moreover, GB1107 potentiated the effects of a PD-L1 immune checkpoint inhibitor to increase expression of cytotoxic (IFNγ, granzyme B, perforin-1, Fas ligand) and apoptotic (cleaved caspase-3) effector molecules. In summary, galectin-3 is an important regulator of lung adenocarcinoma progression. The novel galectin-3 inhibitor presented could provide an effective, nontoxic monotherapy or be used in combination with immune checkpoint inhibitors to boost immune infiltration and responses in lung adenocarcinoma and potentially other aggressive cancers. Significance: A novel and orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and metastasis and augments response to PD-L1 blockade.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy