SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seydel Tilo) "

Sökning: WFRF:(Seydel Tilo)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, Christian, et al. (författare)
  • Accessing self-diffusion on nanosecond time and nanometre length scales with minute kinetic resolution
  • 2024
  • Ingår i: Journal of Applied Crystallography. - : International Union of Crystallography (IUCr). - 0021-8898 .- 1600-5767. ; 57:Pt 4, s. 912-924
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron spectroscopy uniquely and non-destructively accesses diffusive dynamics in soft and biological matter, including for instance proteins in hydrated powders or in solution, and more generally dynamic properties of condensed matter on the molecular level. Given the limited neutron flux resulting in long counting times, it is important to optimize data acquisition for the specific question, in particular for time-resolved (kinetic) studies. The required acquisition time was recently significantly reduced by measurements of discrete energy transfers rather than quasi-continuous neutron scattering spectra on neutron backscattering spectrometers. Besides this reduction in acquisition times, smaller amounts of samples can be measured with better statistics, and most importantly, kinetically changing samples, such as aggregating or crystallizing samples, can be followed. However, given the small number of discrete energy transfers probed in this mode, established analysis frameworks for full spectra can break down. Presented here are new approaches to analyze measurements of diffusive dynamics recorded within fixed windows in energy transfer, and these are compared with the analysis of full spectra. The new approaches are tested by both modeled scattering functions and a comparative analysis of fixed energy window data and full spectra on well understood reference samples. This new approach can be employed successfully for kinetic studies of the dynamics focusing on the short-time apparent center-of-mass diffusion.
  •  
2.
  • Beck, Christian, et al. (författare)
  • Following Protein Dynamics in Real Time during Crystallization
  • 2019
  • Ingår i: Crystal Growth and Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; , s. 7036-7045
  • Tidskriftsartikel (refereegranskat)abstract
    • The process of protein crystallization from aqueous protein solutions is still insufficiently understood. During macroscopic crystal formation, occurring often on time scales from a few hours to several days, protein dynamics evolves on the molecular level. Here, we present a proof of concept and a framework to observe this evolving diffusive dynamics on the pico- to nanosecond time scale, associated with cluster or precursor formation that ultimately results in emerging crystals. We investigated the model system of the protein β-lactoglobulin in D2O in the presence of ZnCl2, which induces crystallization by electrostatic bridges. First, the structural changes occurring during crystallization were followed by small-angle neutron scattering. Furthermore, we employed neutron backscattering and spin-echo spectroscopy to measure the ensemble-averaged self- and collective diffusion on nanosecond time scales of protein solutions with a kinetic time resolution on the order of 15 min. The experiments provide information on the increasing number fraction of immobilized proteins as well as on the diffusive motion of unbound proteins in an increasingly depleted phase. Simultaneously, information on the internal dynamics of the proteins is obtained.
  •  
3.
  • Beck, Christian, et al. (författare)
  • Neutron spectroscopy on protein solutions employing backscattering with an increased energy range
  • 2019
  • Ingår i: Physica B: Condensed Matter. - : Elsevier BV. - 0921-4526. ; 562, s. 31-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel cold neutron backscattering spectrometers contribute substantially to the understanding of the diffusive dynamics of proteins in dense aqueous suspensions. Such suspensions are fundamentally interesting for instance in terms of the so-called macromolecular crowding, protein cluster formation, gelation, and self-assembly. Notably, backscattering spectrometers with the highest flux can simultaneously access the center-of-mass diffusion of the proteins and the superimposed internal molecular diffusive motions. The nearly complete absence of protein-protein collisions on the accessible nanosecond observation time scale even in dense protein suspensions implies that neutron backscattering accesses the so-called short-time limit for the center-of-mass diffusion. This limit is particularly interesting in terms of a theoretical understanding by concepts from colloid physics. Here we briefly review recent progress in studying protein dynamics achieved with the latest generation of backscattering spectrometers. We illustrate this progress by the first data from a protein solution using the backscattering-and-time-of-flight option BATS on IN16B at the ILL and we outline future perspectives.
  •  
4.
  • Beck, Christian, et al. (författare)
  • Notes on Fitting and Analysis Frameworks for QENS Spectra of (Soft) Colloid Suspensions
  • 2022
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 272, s. 01004-01004
  • Tidskriftsartikel (refereegranskat)abstract
    • With continuously improving signal-to-noise ratios, a statistically sound analysis of quasi-elasticneutron scattering (QENS) spectra requires to fit increasingly complex models which poses several challenges.Simultaneous fits of the spectra for all recorded values of the momentum transfer become a standard approach.Spectrometers at spallation sources can have a complicated non-Gaussian resolution function which has to bedescribed most accurately. At the same time, to speed up the fitting, an analytical convolution with this resolutionfunction is of interest. Here, we discuss basic concepts to efficient approaches for fits of QENS spectra basedon standard MATLAB and Python fit algorithms. We illustrate the fits with example data from IN16B, BASIS,and BATS.
  •  
5.
  • Beck, Christian, et al. (författare)
  • Short-Time Transport Properties of Bidisperse Suspensions of Immunoglobulins and Serum Albumins Consistent with a Colloid Physics Picture.
  • 2022
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 126:38, s. 7400-7408
  • Tidskriftsartikel (refereegranskat)abstract
    • The crowded environment of biological systems such as the interior of living cells is occupied by macromolecules with a broad size distribution. This situation of polydispersity might influence the dependence of the diffusive dynamics of a given tracer macromolecule in a monodisperse solution on its hydrodynamic size and on the volume fraction. The resulting size dependence of diffusive transport crucially influences the function of a living cell. Here, we investigate a simplified model system consisting of two constituents in aqueous solution, namely, of the proteins bovine serum albumin (BSA) and bovine polyclonal gamma-globulin (Ig), systematically depending on the total volume fraction and ratio of these constituents. From high-resolution quasi-elastic neutron spectroscopy, the separate apparent short-time diffusion coefficients for BSA and Ig in the mixture are extracted, which show substantial deviations from the diffusion coefficients measured in monodisperse solutions at the same total volume fraction. These deviations can be modeled quantitatively using results from the short-time rotational and translational diffusion in a two-component hard sphere system with two distinct, effective hydrodynamic radii. Thus, we find that a simple colloid picture well describes short-time diffusion in binary mixtures as a function of the mixing ratio and the total volume fraction. Notably, the self-diffusion of the smaller protein BSA in the mixture is faster than the diffusion in a pure BSA solution, whereas the self-diffusion of Ig in the mixture is slower than in the pure Ig solution.
  •  
6.
  • Beck, Christian, et al. (författare)
  • Temperature and salt controlled tuning of protein clusters
  • 2021
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; :37, s. 8506-8516
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (c(p)) and the concentrations of the trivalent salts YCl3 and LaCl3 (c(s)). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on c(p), c(s) and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(c(p), c(s), T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
  •  
7.
  • Benetti, Ana R, et al. (författare)
  • How mobile are protons in the structure of dental glass ionomer cements?
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.
  •  
8.
  • Braun, Michal K., et al. (författare)
  • Crowding-Controlled Cluster Size in Concentrated Aqueous Protein Solutions : Structure, Self- and Collective Diffusion
  • 2017
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:12, s. 2590-2596
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the concentration-controlled formation of clusters in β-lactoglobulin (BLG) protein solutions combining structural and dynamical scattering techniques. The static structure factor from small-angle X-ray scattering as well as de-Gennes narrowing in the nanosecond diffusion function D(q) from neutron spin echo spectroscopy support a picture of cluster formation. Using neutron backscattering spectroscopy, a monotonous increase of the average hydrodynamic cluster radius is monitored over a broad protein concentration range, corresponding to oligomeric structures of BLG ranging from the native dimers up to roughly four dimers. The results suggest that BLG forms compact clusters that are static on the observation time scale of several nanoseconds. The presented analysis provides a general framework to access the structure and dynamics of macromolecular assemblies in solution.
  •  
9.
  • Fagerberg, Eric, et al. (författare)
  • Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon : A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207.
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDPs) are proteins that, in comparison with globular/structured proteins, lack a distinct tertiary structure. Here, we use the model IDP, Histatin 5, for studying its dynamical properties under self-crowding conditions with quasi-elastic neutron scattering in combination with full atomistic molecular dynamics (MD) simulations. The aim is to determine the effects of crowding on the center-of-mass diffusion as well as the internal diffusive behavior. The diffusion was found to decrease significantly, which we hypothesize can be attributed to some degree of aggregation at higher protein concentrations, (≥100 mg/mL), as indicated by recent small-angle X-ray scattering studies. Temperature effects are also considered and found to, largely, follow Stokes-Einstein behavior. Simple geometric considerations fail to accurately predict the rates of diffusion, while simulations show semiquantitative agreement with experiments, dependent on assumptions of the ratio between translational and rotational diffusion. A scaling law that previously was found to successfully describe the behavior of globular proteins was found to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations show that the width of the distribution with respect to diffusion is not a simplistic mirroring of the distribution of radius of gyration, hence, displaying the particular features of IDPs that need to be accounted for.
  •  
10.
  • Gates, Will P., et al. (författare)
  • Neutron Time-of-Flight Quantification of Water Desorption Isotherms of Montmorillonite
  • 2012
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:9, s. 5558-5570
  • Tidskriftsartikel (refereegranskat)abstract
    • The multiple energy states of water held by surfaces of a clay mineral can be effectively probed with time-of-flight and fixed elastic window neutron scattering. We used these techniques to quantitatively differentiate water types, including rotational and translational diffusions, in Ca- and Na-montmorillonite (SAz-1) and charge-reduced preparations equilibrated at RH = 33% and 55%, whose gravimetric water contents are in proportion with their layer charge. Quasi-elastic neutron scattering results revealed significant differences within interlayer water populations and between interlayer and interparticle waters. Interlayer cationic and H-bonded waters have residence times ranging from a few nanoseconds to tenths of picoseconds, while interparticle water, obtained for the RH = 55% equilibrated samples, showed an average diffusivity faster than interlayer water, yet slower than bulk water. Our results enabled us to differentiate at least two water motions during dehydration of Ca- and Na-SAz-1 (initially equilibrated at RH = 55%) by using a "controlled water loss" time-of-flight procedure. This work confirms that (a) interlayer and cationic water in dioctahedral smectites are characterized by slower motions than interparticle water, (b) interlayer cations influenced the dynamics of water loss, probably through its affect on clay fabric, and (c) interparticle water behaves more like bulk water. At 55% RH the Ca montmorillonite held more interparticle water, but on dehydration under controlled conditions, it retained interlayer and cationic water more strongly than Na montmorillonite.
  •  
11.
  • Girelli, Anita, et al. (författare)
  • Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation
  • 2021
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 18:11, s. 4162-4169
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibody therapies are typically based on high-concentration formulations that need to be administered subcutaneously. These conditions induce several challenges, inter alia a viscosity suitable for injection, sufficient solution stability, and preservation of molecular function. To obtain systematic insights into the molecular factors, we study the dynamics on the molecular level under strongly varying solution conditions. In particular, we use solutions of antibodies with poly(ethylene glycol), in which simple cooling from room temperature to freezing temperatures induces a transition from a well-dispersed solution into a phase-separated and macroscopically arrested system. Using quasi-elastic neutron scattering during in situ cooling ramps and in prethermalized measurements, we observe a strong decrease in antibody diffusion, while internal flexibility persists to a significant degree, thus ensuring the movement necessary for the preservation of molecular function. These results are relevant for a more dynamic understanding of antibodies in high-concentration formulations, which affects the formation of transient clusters governing the solution viscosity.
  •  
12.
  • Grimaldo, Marco, et al. (författare)
  • Dynamics of proteins in solution
  • 2019
  • Ingår i: Quarterly Reviews of Biophysics. - 1469-8994. ; 52
  • Forskningsöversikt (refereegranskat)abstract
    • The dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
  •  
13.
  • Grimaldo, Marco, et al. (författare)
  • Protein Short-Time Diffusion in a Naturally Crowded Environment
  • 2019
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:8, s. 1709-1715
  • Tidskriftsartikel (refereegranskat)abstract
    • The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius R eff = R i 3 1/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > R eff (R < R eff ) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes.
  •  
14.
  • Hirschmann, Frank, et al. (författare)
  • Effects of flexibility in coarse-grained models for bovine serum albumin and immunoglobulin G
  • 2023
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 158:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA, PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large pool of 6-bead coarse-grained models using two suitable metrics that quantify the agreement in the distribution of collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature [Chaudhri et al., J. Phys. Chem. B 116, 8045 (2012)] and is employed here to compare findings for the compact BSA molecule and the more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in their internal constraints and thus account for a variation of flexibility. We study denser solutions of the coarse-grained models with purely repulsive molecules (achievable by suitable salt conditions) and address the effect of packing and flexibility on dynamic and static behavior. Translational and rotational self-diffusivity is enhanced for more elastic models. Finally, we discuss a number of effective sphere sizes for the BSA molecule, which can be defined from its static and dynamic properties. Here, it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a relative spread of about ±10% around a mean of 5.5 nm.
  •  
15.
  • Jacobsen, Henrik, et al. (författare)
  • Spin dynamics of the director state in frustrated hyperkagome systems
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9969 .- 2469-9950. ; 104:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an experimental study of the magnetic structure and dynamics of two frustrated hyperkagome compounds, Gd3Ga5O12 and Gd3Al5O12. It has previously been shown that Gd3Ga5O12 exhibits long-range correlations of multipolar directors that are formed from antiferromagnetic spins on loops of ten ions. Using neutron diffraction and reverse Monte Carlo simulations we prove the existence of similar magnetic correlations in Gd3Al5O12, showing the ubiquity of these complex structures in frustrated hyperkagome materials. Using inelastic neutron scattering we shed further light on the director state and the associated low-lying magnetic excitations. In addition, we have measured quasielastic dynamics that show evidence of spin diffusion. Finally, we present AC susceptibility measurements on both Gd3Ga5O12 and Gd3Al5O12, revealing a large difference in the low-frequency dynamics between the two otherwise similar compounds.
  •  
16.
  • Larsen, Simon R., et al. (författare)
  • Physicochemical characterisation of fluorohectorite : Water dynamics and nanocarrier properties
  • 2020
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • Clay minerals such as fluorohectorite (FHt) have come into prominence as drug carrier systems due to their layered structure and excellent cation exchange capabilities. Water present in the interlayers of FHt is believed to facilitate the uptake of bio-active molecules in these systems, yet details of this interaction are not well understood. To shed light into this question, using quasi-elastic neutron scattering and the jump diffusion model, we determined the diffusion coefficients and the residence time of water in this synthetic smectite clay. We demonstrate how different interlayer cations (Li+, Na+ and Ni2+) and different hydration levels influenced water mobility in FHt. By means of the elastic window method and analysis of the thermal decomposition of samples with the drug Ciprofloxacin intercalated at pH 2 in LiFHt, we confirmed that the intercalation process removed most of the interlayer water previously present in the clay. Based on the Kissinger procedure, we also showed that thermal decomposition of the intercalated drug was activated at lower temperature. These findings are discussed in relation to the drug's shelf life and might aid in the selection of clay systems for use as nanocarrier.
  •  
17.
  • Lenton, Samuel, et al. (författare)
  • Effect of Phosphorylation on a Human-like Osteopontin Peptide
  • 2017
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495. ; 112:8, s. 1586-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.
  •  
18.
  • Matsarskaia, Olga, et al. (författare)
  • Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22, s. 18507-18517
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein denaturation in concentrated solutions consists of the unfolding of the native protein structure, and subsequent cross-linking into clusters or gel networks. While the kinetic evolution of structure has been studied for some cases, the underlying microscopic dynamics of proteins has so far been neglected. However, protein dynamics is essential to understand the specific nature of assembly processes, such as diffusion-limited growth, or vitrification of dense liquids. Here, we present a study on thermal denaturation of concentrated solutions of bovine serum albumin (BSA) in D2O with and without NaCl. Using small-angle scattering, we provide information on structure before, during and after denaturation. Using quasi-elastic neutron scattering, we monitor in real-time the microscopic dynamics and dynamical confinement throughout the entire denaturation process covering protein unfolding and cross-linking. After denaturation, the protein dynamics is slowed down in salty solutions compared to those in pure water, while the stability and dynamics of the native solution appears unaffected by salt. The approach presented here opens opportunities to link microscopic dynamics to emerging structural properties, with implications for assembly processes in soft and biological matter.
  •  
19.
  • Reiser, Mario, et al. (författare)
  • Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy μs−1 in a time window up to 10 μs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.
  •  
20.
  • Sohmen, Benedikt, et al. (författare)
  • The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90
  • 2023
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:36
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy