SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shaffer C.) "

Search: WFRF:(Shaffer C.)

  • Result 1-47 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
2.
  • Pulit, S. L., et al. (author)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • In: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Journal article (peer-reviewed)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
3.
  •  
4.
  • Pironi, L., et al. (author)
  • Clinical classification of adult patients with chronic intestinal failure due to benign disease: An international multicenter cross-sectional survey
  • 2018
  • In: Clinical Nutrition. - : Elsevier BV. - 0261-5614. ; 37:2, s. 728-738
  • Journal article (peer-reviewed)abstract
    • Background & aims: The aim of the study was to evaluate the applicability of the ESPEN 16-category clinical classification of chronic intestinal failure, based on patients' intravenous supplementation (IVS) requirements for energy and fluids, and to evaluate factors associated with those requirements. Methods: ESPEN members were invited to participate through ESPEN Council representatives. Participating centers enrolled adult patients requiring home parenteral nutrition for chronic intestinal failure on March 1st 2015. The following patient data were recorded though a structured database: sex, age, body weight and height, intestinal failure mechanism, underlying disease, IVS volume and energy need. Results: Sixty-five centers from 22 countries enrolled 2919 patients with benign disease. One half of the patients were distributed in 3 categories of the ESPEN clinical classification. 9% of patients required only fluid and electrolyte supplementation. IVS requirement varied considerably according to the pathophysiological mechanism of intestinal failure. Notably, IVS volume requirement represented loss of intestinal function better than IVS energy requirement. A simplified 8 category classification of chronic intestinal failure was devised, based on two types of IVS (either fluid and electrolyte alone or parenteral nutrition admixture containing energy) and four categories of volume. Conclusions: Patients' IVS requirements varied widely, supporting the need for a tool to homogenize patient categorization. This study has devised a novel, simplified eight category IVS classification for chronic intestinal failure that will prove useful in both the clinical and research setting when applied together with the underlying pathophysiological mechanism of the patient's intestinal failure. (C) 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
  •  
5.
  •  
6.
  • Winkler, TW, et al. (author)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Teumer, A, et al. (author)
  • Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4130-
  • Journal article (peer-reviewed)abstract
    • Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
  •  
12.
  • Pattaro, Cristian, et al. (author)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
13.
  •  
14.
  • Asselbergs, Folkert W., et al. (author)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
15.
  •  
16.
  • Roselli, Carolina, et al. (author)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Journal article (peer-reviewed)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
17.
  • Saad, Ayman, et al. (author)
  • Impact of T Cell Dose on Outcome of T Cell-Replete HLA-Matched Allogeneic Peripheral Blood Stem Cell Transplantation
  • 2019
  • In: Biology of blood and marrow transplantation. - : ELSEVIER SCIENCE INC. - 1083-8791 .- 1523-6536. ; 25:9, s. 1875-1883
  • Journal article (peer-reviewed)abstract
    • Data on whether the T cell dose of allogeneic peripheral blood stem cell (PBSC) products influences transplantation outcomes are conflicting. Using the Center for International Blood and Marrow Transplant Research database, we identified 2736 adult patients who underwent first allogeneic PBSC transplantation for acute leukemia or myelodysplastic syndrome between 2008 and 2014 using an HLA-matched sibling donor (MSD) or an 8/8-matched unrelated donor (MUD). We excluded ex vivo and in vivo T cell-depleted transplantations. Correlative analysis was performed between CD3(+) T cell dose and the risk of graft-versus-host-disease (GVHD), relapse, nonrelapse mortality (NRM), disease-free survival (DFS), and overall survival (OS). Using maximum likelihood estimation, we identified CD3(+) T cell dose cutoff that separated the risk of acute GVHD (aGVHD) grade II-IV in both the MSD and MUD groups. A CD3(+) T cell dose cutoff of 14 x 10(7) cells/kg identified MSD/low CD3(+) (n = 223) and MSD/high CD3(+) (n = 1214), and a dose of 15 x 107 cells/kg identified MUD/low (n = 197) and MUD/high CD3(+) (n = 1102). On univariate analysis, the MSD/high CD3(+) group had a higher cumulative incidence of day +100 aGVHD grade II-IV compared with the MSD/low CD3(+) group (33% versus 25%; P=.009). There were no differences between the 2 groups in engraftment rate, risk of aGVHD grade III-IV or chronic GVHD (cGVHD), NRM, relapse, DFS, or OS. The MUD/high CD3(+) group had a higher cumulative incidence of day +100 aGVHD grade II-IV compared with the MUD/low CD3(+) group (49% versus 41%; P=.04). There were no differences between the 2 groups in engraftment rate, risk of severe aGVHD or cGVHD, NRM, relapse, DFS, or OS. Multivariate analysis of the MSD and MUD groups failed to show an association between CD3(+) T cell dose and the risk of either aGVHD grade II-IV (P=.10 and .07, respectively) or cGVHD (P = .80 and .30, respectively). Subanalysis of CD4(+) T cells, CD8(+) T cells, and CD4+/CD8+ ratio failed to identify cutoff values predictive of transplantation outcomes; however, using the log-rank test, the sample size was suboptimal for identifying a difference at this cutoff cell dose. In this registry study, the CD3(+) T cell dose of PBSC products did not influence the risk of aGVHD or cGVHD or other transplantation outcomes when using an MSD or an 8/8-matched MUD. Subset analyses of CD4(+) and CD8(+) T cell doses were not possible given our small sample size. (C) 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
  •  
18.
  • Sarwar, Nadeem, et al. (author)
  • Interleukin-6 receptor pathways in coronary heart disease : a collaborative meta-analysis of 82 studies
  • 2012
  • In: The Lancet. - New York, NY, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 379:9822, s. 1205-1213
  • Journal article (peer-reviewed)abstract
    • Background: Persistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling. Methods: In a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6. Findings: The minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele >= 0.04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34.3% (95% CI 30.4-38.2) and of interleukin 6 by 14.6% (10.7-18.4), and mean concentration of C-reactive protein was reduced by 7.5% (5.9-9.1) and of fibrinogen by 1.0% (0.7-1.3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3.4% (1.8-5.0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes. Interpretation: Large-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease.
  •  
19.
  • Wormser, David, et al. (author)
  • Adult height and the risk of cause-specific death and vascular morbidity in 1 million people : individual participant meta-analysis
  • 2012
  • In: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 41:5, s. 1419-1433
  • Journal article (peer-reviewed)abstract
    • BackgroundThe extent to which adult height, a biomarker of the interplay of genetic endowment and early-life experiences, is related to risk of chronic diseases in adulthood is uncertain.MethodsWe calculated hazard ratios (HRs) for height, assessed in increments of 6.5 cm, using individual-participant data on 174 374 deaths or major non-fatal vascular outcomes recorded among 1 085 949 people in 121 prospective studies.ResultsFor people born between 1900 and 1960, mean adult height increased 0.5-1 cm with each successive decade of birth. After adjustment for age, sex, smoking and year of birth, HRs per 6.5 cm greater height were 0.97 (95% confidence interval: 0.96-0.99) for death from any cause, 0.94 (0.93-0.96) for death from vascular causes, 1.04 (1.03-1.06) for death from cancer and 0.92 (0.90-0.94) for death from other causes. Height was negatively associated with death from coronary disease, stroke subtypes, heart failure, stomach and oral cancers, chronic obstructive pulmonary disease, mental disorders, liver disease and external causes. In contrast, height was positively associated with death from ruptured aortic aneurysm, pulmonary embolism, melanoma and cancers of the pancreas, endocrine and nervous systems, ovary, breast, prostate, colorectum, blood and lung. HRs per 6.5 cm greater height ranged from 1.26 (1.12-1.42) for risk of melanoma death to 0.84 (0.80-0.89) for risk of death from chronic obstructive pulmonary disease. HRs were not appreciably altered after further adjustment for adiposity, blood pressure, lipids, inflammation biomarkers, diabetes mellitus, alcohol consumption or socio-economic indicators.ConclusionAdult height has directionally opposing relationships with risk of death from several different major causes of chronic diseases.
  •  
20.
  • Chen, H.Y., et al. (author)
  • Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study
  • 2023
  • In: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 44:21, s. 1927-1939
  • Journal article (peer-reviewed)abstract
    • Aims Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. Methods and results A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10−8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2–SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26–1.35; P = 2.7 × 10−51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08–1.37; P = 1.4 × 10−3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90–5.12; P = 2.1 × 10−20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17–1.23; P = 4.8 × 10−73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05–1.9; P = 1.9 × 10−12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. Conclusion Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies. © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.
  •  
21.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
22.
  •  
23.
  • Kaptoge, S., et al. (author)
  • C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction
  • 2012
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 367:14, s. 1310-1320
  • Journal article (peer-reviewed)abstract
    • Background There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events. Methods We analyzed data from 52 prospective studies that included 246,669 participants without a history of cardiovascular disease to investigate the value of adding CRP or fibrinogen levels to conventional risk factors for the prediction of cardiovascular risk. We calculated measures of discrimination and reclassification during follow-up and modeled the clinical implications of initiation of statin therapy after the assessment of CRP or fibrinogen. Results The addition of information on high-density lipoprotein cholesterol to a prognostic model for cardiovascular disease that included age, sex, smoking status, blood pressure, history of diabetes, and total cholesterol level increased the C-index, a measure of risk discrimination, by 0.0050. The further addition to this model of information on CRP or fibrinogen increased the C-index by 0.0039 and 0.0027, respectively (P < 0.001), and yielded a net reclassification improvement of 1.52% and 0.83%, respectively, for the predicted 10-year risk categories of "low" (< 10%), " intermediate" (10% to < 20%), and "high" (>= 20%) (P < 0.02 for both comparisons). We estimated that among 100,000 adults 40 years of age or older, 15,025 persons would initially be classified as being at intermediate risk for a cardiovascular event if conventional risk factors alone were used to calculate risk. Assuming that statin therapy would be initiated in accordance with Adult Treatment Panel III guidelines (i.e., for persons with a predicted risk of >= 20% and for those with certain other risk factors, such as diabetes, irrespective of their 10-year predicted risk), additional targeted assessment of CRP or fibrinogen levels in the 13,199 remaining participants at intermediate risk could help prevent approximately 30 additional cardiovascular events over the course of 10 years. Conclusions In a study of people without known cardiovascular disease, we estimated that under current treatment guidelines, assessment of the CRP or fibrinogen level in people at intermediate risk for a cardiovascular event could help prevent one additional event over a period of 10 years for every 400 to 500 people screened. (Funded by the British Heart Foundation and others.)
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Stitziel, Nathan O., et al. (author)
  • Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease
  • 2016
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 374:12, s. 1134-1144
  • Journal article (peer-reviewed)abstract
    • BACKGROUND The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P = 4.2x10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P = 4.0x10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P = 2.0x10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P = 2.5x10(-7)). CONCLUSIONS We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease.
  •  
29.
  • Varga, M G, et al. (author)
  • Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system
  • 2016
  • In: Oncogene. - : Nature Publishing Group. - 0950-9232 .- 1476-5594. ; 35:48, s. 6262-6269
  • Journal article (peer-reviewed)abstract
    • Helicobacter pylori (H. pylori) is the strongest identified risk factor for gastric cancer, the third most common cause of cancer-related death worldwide. An H. pylori constituent that augments cancer risk is the strain-specific cag pathogenicity island, which encodes a type IV secretion system (T4SS) that translocates a pro-inflammatory and oncogenic protein, CagA, into epithelial cells. However, the majority of persons colonized with CagA+ H. pylori strains do not develop cancer, suggesting that other microbial effectors also have a role in carcinogenesis. Toll-like receptor 9 (TLR9) is an endosome bound, innate immune receptor that detects and responds to hypo-methylated CpG DNA motifs that are most commonly found in microbial genomes. High-expression tlr9 polymorphisms have been linked to the development of premalignant lesions in the stomach. We now demonstrate that levels of H. pylori-mediated TLR9 activation and expression are directly related to gastric cancer risk in human populations. Mechanistically, we show for the first time that the H. pylori cancer-associated cag T4SS is required for TLR9 activation and that H. pylori DNA is actively translocated by the cag T4SS to engage this host receptor. Activation of TLR9 occurs through a contact-dependent mechanism between pathogen and host, and involves transfer of microbial DNA that is both protected as well as exposed during transport. These results indicate that TLR9 activation via the cag island may modify the risk for malignancy within the context of H. pylori infection and provide an important framework for future studies investigating the microbial-epithelial interface in gastric carcinogenesis.
  •  
30.
  • Webb, Thomas R., et al. (author)
  • Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease
  • 2017
  • In: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 69:7, s. 823-836
  • Journal article (peer-reviewed)abstract
    • BACKGROUND Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.OBJECTIVES This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci.METHODS In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs.RESULTS We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 x 10(-4) with a range of other diseases/traits.CONCLUSIONS We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
  •  
31.
  • Wuttke, Matthias, et al. (author)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
32.
  • Yoneyama, Sachiko, et al. (author)
  • Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:9, s. 2498-2510
  • Journal article (peer-reviewed)abstract
    • Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBIs Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 2080 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes 50 000 cosmopolitan tagged SNPs across 2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P 2.4 10(6)). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR ( SE, 0.048 0.008, P 7.7 10(9)) as was rs7302703-G in HOXC10 ( 0.044 0.008, P 2.9 10(7)) and rs936108-C in PEMT ( 0.035 0.007, P 1.9 10(6)). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 ( 0.10 0.02, P 1.9 10(6)) and rs1037575-A in ATBDB4 ( 0.046 0.01, P 2.2 10(6)), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.
  •  
33.
  • Chen, Hao Yu, et al. (author)
  • Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis
  • 2020
  • In: JAMA cardiology. - : American Medical Association (AMA). - 2380-6583 .- 2380-6591. ; 5:6, s. 694-702
  • Journal article (peer-reviewed)abstract
    • Importance: Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets.Objective: To identify novel genetic loci and pathways associated with AS.Design, Setting, and Participants: This genome-wide association study used a case-control design to evaluate 44 703 participants (3469 cases of AS) of self-reported European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (from January 1, 1996, to December 31, 2015). Replication was performed in 7 other cohorts totaling 256 926 participants (5926 cases of AS), with additional analyses performed in 6942 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Follow-up biomarker analyses with aortic valve calcium (AVC) were also performed. Data were analyzed from May 1, 2017, to December 5, 2019.Exposures: Genetic variants (615 643 variants) and polyunsaturated fatty acids (ω-6 and ω-3) measured in blood samples.Main Outcomes and Measures: Aortic stenosis and aortic valve replacement defined by electronic health records, surgical records, or echocardiography and the presence of AVC measured by computed tomography.Results: The mean (SD) age of the 44 703 GERA participants was 69.7 (8.4) years, and 22 019 (49.3%) were men. The rs174547 variant at the FADS1/2 locus was associated with AS (odds ratio [OR] per C allele, 0.88; 95% CI, 0.83-0.93; P = 3.0 × 10-6), with genome-wide significance after meta-analysis with 7 replication cohorts totaling 312 118 individuals (9395 cases of AS) (OR, 0.91; 95% CI, 0.88-0.94; P = 2.5 × 10-8). A consistent association with AVC was also observed (OR, 0.91; 95% CI, 0.83-0.99; P = .03). A higher ratio of arachidonic acid to linoleic acid was associated with AVC (OR per SD of the natural logarithm, 1.19; 95% CI, 1.09-1.30; P = 6.6 × 10-5). In mendelian randomization, increased FADS1 liver expression and arachidonic acid were associated with AS (OR per unit of normalized expression, 1.31 [95% CI, 1.17-1.48; P = 7.4 × 10-6]; OR per 5-percentage point increase in arachidonic acid for AVC, 1.23 [95% CI, 1.01-1.49; P = .04]; OR per 5-percentage point increase in arachidonic acid for AS, 1.08 [95% CI, 1.04-1.13; P = 4.1 × 10-4]).Conclusions and Relevance: Variation at the FADS1/2 locus was associated with AS and AVC. Findings from biomarker measurements and mendelian randomization appear to link ω-6 fatty acid biosynthesis to AS, which may represent a therapeutic target.
  •  
34.
  • Ganesh, Santhi K., et al. (author)
  • Loci influencing blood pressure identified using a cardiovascular gene-centric array
  • 2013
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:8, s. 1663-1678
  • Journal article (peer-reviewed)abstract
    • Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
  •  
35.
  • Gorski, Mathias, et al. (author)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Journal article (peer-reviewed)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
36.
  • Kashyap, Vasundhra, et al. (author)
  • Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs
  • 2009
  • In: Stem Cells and Development. - : Mary Ann Liebert. - 1547-3287 .- 1557-8534. ; 18:7, s. 1093-1108
  • Research review (peer-reviewed)abstract
    • Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
  •  
37.
  • Loryan, Irena, Associate Professor (Docent), 1977-, et al. (author)
  • Unbound Brain-to-Plasma Partition Coefficient, K-p,K-uu,K-brain-a Game Changing Parameter for CNS Drug Discovery and Development
  • 2022
  • In: Pharmaceutical research. - : Springer Nature. - 0724-8741 .- 1573-904X. ; 39:7, s. 1321-1341
  • Journal article (peer-reviewed)abstract
    • Purpose More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (K-p,K-uu,K-brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, K-p,K-uu,K-brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. Methods To understand the importance and impact of the K-p,K-uu,K-brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. Results and conclusions From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of K-p,K-uu,K-brain as compared to other parameters related to brain exposure. Adoption of the K-p,K-uu,K-brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of K-p,K-uu,K-brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for K-p,K-uu,K-brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
  •  
38.
  • Mosley, Jonathan D., et al. (author)
  • Probing the Virtual Proteome to Identify Novel Disease Biomarkers
  • 2018
  • In: Circulation. - 1524-4539. ; 138:22, s. 2469-2481
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
  •  
39.
  • Scherer, SW, et al. (author)
  • Human chromosome 7: DNA sequence and biology
  • 2003
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 300:5620, s. 767-772
  • Journal article (peer-reviewed)abstract
    • DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.
  •  
40.
  • Shaffer, David R, et al. (author)
  • Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer
  • 2007
  • In: Clinical Cancer Research. - 1078-0432. ; 13:7, s. 2023-2029
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To better direct targeted therapies to the patients with tumors that express the target, there is an urgent need for blood-based assays that provide expression information on a consistent basis in real time with minimal patient discomfort. We aimed to use immunomagnetic-capture technology to isolate and analyze circulating tumor cells (CTC) from small volumes of peripheral blood of patients with advanced prostate cancer. EXPERIMENTAL DESIGN: Blood was collected from 63 patients with metastatic prostate cancer. CTCs were isolated by the Cell Search system, which uses antibodies to epithelial cell adhesion marker and immunomagnetic capture. CTCs were defined as nucleated cells positive for cytokeratins and negative for CD45. Captured cells were analyzed by immunofluorescence, Papanicolau staining, and fluorescence in situ hybridization. RESULTS: Most patients (65%) had 5 or more CTCs per 7.5 mL blood sample. Cell counts were consistent between laboratories (c = 0.99) and did not change significantly over 72 or 96 h of storage before processing (c = 0.99). Their identity as prostate cancer cells was confirmed by conventional cytologic analysis. Molecular profiling, including analysis of epidermal growth factor receptor (EGFR) expression, chromosome ploidy, and androgen receptor (AR) gene amplification, was possible for all prostate cancer patients with >or=5 CTCs. CONCLUSIONS: The analysis of cancer-related alterations at the DNA and protein level from CTCs is feasible in a hospital-based clinical laboratory. The alterations observed in EGFR and AR suggest that the methodology may have a role in clinical decision making.
  •  
41.
  •  
42.
  • Sheen, Justin K., et al. (author)
  • The required size of cluster randomized trials of nonpharmaceutical interventions in epidemic settings
  • 2022
  • In: Statistics in Medicine. - : Wiley. - 0277-6715 .- 1097-0258. ; 41:13, s. 2466-2482
  • Journal article (peer-reviewed)abstract
    • To control the SARS-CoV-2 pandemic and future pathogen outbreaks requires an understanding of which nonpharmaceutical interventions are effective at reducing transmission. Observational studies, however, are subject to biases that could erroneously suggest an impact on transmission, even when there is no true effect. Cluster randomized trials permit valid hypothesis tests of the effect of interventions on community transmission. While such trials could be completed in a relatively short period of time, they might require large sample sizes to achieve adequate power. However, the sample sizes required for such tests in outbreak settings are largely undeveloped, leaving unanswered the question of whether these designs are practical. We develop approximate sample size formulae and simulation-based sample size methods for cluster randomized trials in infectious disease outbreaks. We highlight key relationships between characteristics of transmission and the enrolled communities and the required sample sizes, describe settings where trials powered to detect a meaningful true effect size may be feasible, and provide recommendations for investigators in planning such trials. The approximate formulae and simulation banks may be used by investigators to quickly assess the feasibility of a trial, followed by more detailed methods to more precisely size the trial. For example, we show that community-scale trials requiring 220 clusters with 100 tested individuals per cluster are powered to identify interventions that reduce transmission by 40% in one generation interval, using parameters identified for SARS-CoV-2 transmission. For more modest treatment effects, or when transmission is extremely overdispersed, however, much larger sample sizes are required.
  •  
43.
  • Shungin, Dmitry, et al. (author)
  • Using genetics to test the causal relationship of total adiposity and periodontitis : Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium
  • 2015
  • In: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 638-650
  • Journal article (peer-reviewed)abstract
    • Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis. Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI: 1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals.
  •  
44.
  • Sofer, Tamar, et al. (author)
  • A fully adjusted two-stage procedure for rank-normalization in genetic association studies
  • 2019
  • In: Genetic Epidemiology. - : John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 43:3, s. 263-275
  • Journal article (peer-reviewed)abstract
    • When testing genotype–phenotype associations using linear regression, departure of the trait distribution from normality can impact both Type I error rate control and statistical power, with worse consequences for rarer variants. Because genotypes are expected to have small effects (if any) investigators now routinely use a two‐stage method, in which they first regress the trait on covariates, obtain residuals, rank‐normalize them, and then use the rank‐normalized residuals in association analysis with the genotypes. Potential confounding signals are assumed to be removed at the first stage, so in practice, no further adjustment is done in the second stage. Here, we show that this widely used approach can lead to tests with undesirable statistical properties, due to both combination of a mis‐specified mean–variance relationship and remaining covariate associations between the rank‐normalized residuals and genotypes. We demonstrate these properties theoretically, and also in applications to genome‐wide and whole‐genome sequencing association studies. We further propose and evaluate an alternative fully adjusted two‐stage approach that adjusts for covariates both when residuals are obtained and in the subsequent association test. This method can reduce excess Type I errors and improve statistical power.
  •  
45.
  •  
46.
  • Tragante, Vinicius, et al. (author)
  • Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci.
  • 2014
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:3, s. 349-360
  • Journal article (peer-reviewed)abstract
    • Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification.
  •  
47.
  • Villanueva, Josep, et al. (author)
  • Differential exoprotease activities confer tumor-specific serum peptidome patterns
  • 2006
  • In: Journal of Clinical Investigation. - 0021-9738. ; 116:1, s. 271-284
  • Journal article (peer-reviewed)abstract
    • Recent studies have established distinctive serum polypeptide patterns through mass spectrometry (MS) that reportedly correlate with clinically relevant outcomes. Wider acceptance of these signatures as valid biomarkers for disease may follow sequence characterization of the components and elucidation of the mechanisms by which they are generated. Using a highly optimized peptide extraction and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS-based approach, we now show that a limited subset of serum peptides (a signature) provides accurate class discrimination between patients with 3 types of solid tumors and controls without cancer. Targeted sequence identification of 61 signature peptides revealed that they fall into several tight clusters and that most are generated by exopeptidase activities that confer cancer type-specific differences superimposed on the proteolytic events of the ex vivo coagulation and complement degradation pathways. This small but robust set of marker peptides then enabled highly accurate class prediction for an external validation set of prostate cancer samples. In sum, this study provides a direct link between peptide marker profiles of disease and differential protease activity, and the patterns we describe may have clinical utility as surrogate markers for detection and classification of cancer. Our findings also have important implications for future peptide biomarker discovery efforts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-47 of 47
Type of publication
journal article (43)
conference paper (3)
research review (1)
Type of content
peer-reviewed (44)
other academic/artistic (3)
Author/Editor
Melander, Olle (12)
Gudnason, V (9)
Psaty, BM (9)
Boerwinkle, E (9)
Rader, Daniel J. (9)
Koenig, Wolfgang (9)
show more...
Lind, Lars (8)
Teumer, A (8)
Li, M. (8)
Orho-Melander, Marju (8)
Waldenberger, M. (8)
Chasman, Daniel I. (8)
Kleber, Marcus E. (8)
Boerwinkle, Eric (8)
Peters, A (7)
Melander, O. (7)
Ridker, Paul M. (7)
Rotter, Jerome I. (7)
Gieger, Christian (7)
Samani, Nilesh J. (7)
van der Harst, P (7)
Loos, Ruth J F (7)
Gudnason, Vilmundur (7)
van der Most, Peter ... (7)
van der Harst, Pim (7)
Meisinger, Christa (7)
Ärnlöv, Johan, 1970- (6)
Brenner, H (6)
Ford, I. (6)
Koenig, W. (6)
Smith, AV (6)
Rotter, JI (6)
Volker, U (6)
Muller-Nurasyid, M. (6)
Lehtimaki, T. (6)
Orho-Melander, M. (6)
Verweij, Niek (6)
Waldenberger, Melani ... (6)
Lind, L (6)
Salomaa, V (6)
Padmanabhan, S. (6)
Padmanabhan, Sandosh (6)
Taylor, KD (6)
Morris, AP (6)
Hayward, C. (6)
Kahonen, M (6)
Asselbergs, Folkert ... (6)
Reilly, Muredach P. (6)
Reiner, Alex P. (6)
Lieb, Wolfgang (6)
show less...
University
Karolinska Institutet (25)
Lund University (24)
Uppsala University (18)
Umeå University (12)
University of Gothenburg (7)
Högskolan Dalarna (6)
show more...
Stockholm University (2)
Stockholm School of Economics (1)
Swedish Museum of Natural History (1)
show less...
Language
English (47)
Research subject (UKÄ/SCB)
Medical and Health Sciences (36)
Natural sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view