SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shahabi Himan) "

Sökning: WFRF:(Shahabi Himan)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bui, Dieu Tien, et al. (författare)
  • A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers
  • 2020
  • Ingår i: Sustainability. - Switzerland : MDPI. - 2071-1050. ; 12:3, s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Local scour depth at complex piers (LSCP) cause expensive costs when constructing bridges. In this study, a hybrid artificial intelligence approach of random subspace (RS) meta classifier, based on the reduced error pruning tree (REPTree) base classifier, namely RS-REPTree, was proposed to predict the LSCP. A total of 122 laboratory datasets were used and portioned into training (70%: 85 cases) and validation (30%: 37 cases) datasets for modeling and validation processes, respectively. The statistical metrics such as mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient (R), and Taylor diagram were used to check the goodness-of-fit and performance of the proposed model. The capability of this model was assessed and compared with four state-of-the-art soft-computing benchmark algorithms, including artificial neural network (ANN), support vector machine (SVM), M5P, and REPTree, along with two empirical models, including the Florida Department of Transportation (FDOT) and Hydraulic Engineering Circular No. 18 (HEC-18). The findings showed that machine learning algorithms had the highest goodness-of-fit and prediction accuracy (0.885 < R < 0.945) in comparison to the other models. The results of sensitivity analysis by the proposed model indicated that pile cap location (Y) was a more sensitive factor for LSCP among other factors. The result also depicted that the RS-REPTree ensemble model (R = 0.945) could well enhance the prediction power of the REPTree base classifier (R = 0.885). Therefore, the proposed model can be useful as a promising technique to predict the LSCP.
  •  
2.
  • Chaudhry, Muhammad Hamid, et al. (författare)
  • Assessment of DSM Based on Radiometric Transformation of UAV Data
  • 2021
  • Ingår i: Sensors. - Switzerland : MDPI. - 1424-8220. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Unmanned Aerial Vehicle (UAV) is one of the latest technologies for high spatial resolution 3D modeling of the Earth. The objectives of this study are to assess low-cost UAV data using image radiometric transformation techniques and investigate its effects on global and local accuracy of the Digital Surface Model (DSM). This research uses UAV Light Detection and Ranging (LIDAR) data from 80 meters and UAV Drone data from 300 and 500 meters flying height. RAW UAV images acquired from 500 meters flying height are radiometrically transformed in Matrix Laboratory (MATLAB). UAV images from 300 meters flying height are processed for the generation of 3D point cloud and DSM in Pix4D Mapper. UAV LIDAR data are used for the acquisition of Ground Control Points (GCP) and accuracy assessment of UAV Image data products. Accuracy of enhanced DSM with DSM generated from 300 meters flight height were analyzed for point cloud number, density and distribution. Root Mean Square Error (RMSE) value of Z is enhanced from ±2.15 meters to 0.11 meters. For local accuracy assessment of DSM, four different types of land covers are statistically compared with UAV LIDAR resulting in compatibility of enhancement technique with UAV LIDAR accuracy. 
  •  
3.
  • Ghasemian, Bahareh, et al. (författare)
  • A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
  • 2022
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We mapped landslide susceptibility in Kamyaran city of Kurdistan Province, Iran, using a robust deep-learning (DP) model based on a combination of extreme learning machine (ELM), deep belief network (DBN), back propagation (BP), and genetic algorithm (GA). A total of 118 landslide locations were recorded and divided in the training and testing datasets. We selected 25 conditioning factors, and of these, we specified the most important ones by an information gain ratio (IGR) technique. We assessed the performance of the DP model using statistical measures including sensitivity, specificity, accuracy, F1-measure, and area under-the-receiver operating characteristic curve (AUC). Three benchmark algorithms, i.e., support vector machine (SVM), REPTree, and NBTree, were used to check the applicability of the proposed model. The results by IGR concluded that of the 25 conditioning factors, only 16 factors were important for our modeling procedure, and of these, distance to road, road density, lithology and land use were the four most significant factors. Results based on the testing dataset revealed that the DP model had the highest accuracy (0.926) of the compared algorithms, followed by NBTree (0.917), REPTree (0.903), and SVM (0.894). The landslide susceptibility maps prepared from the DP model with AUC = 0.870 performed the best. We consider the DP model a suitable tool for landslide susceptibility mapping.
  •  
4.
  • Ghasemian, Bahareh, et al. (författare)
  • Application of a Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping in a Mountainous Area
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Landslides can be a major challenge in mountainous areas that are influenced by climate and landscape changes. In this study, we propose a hybrid machine learning model based on a rotation forest (RoF) meta classifier and a random forest (RF) decision tree classifier called RoFRF for landslide prediction in a mountainous area near Kamyaran city, Kurdistan Province, Iran. We used 118 landslide locations and 25 conditioning factors from which their predictive usefulness was measured using the chi-square technique in a 10-fold cross-validation analysis. We used the sensitivity, specificity, accuracy, F1-measure, Kappa, and area under the receiver operating characteristic curve (AUC) to validate the performance of the proposed model compared to the Artificial Neural Network (ANN), Logistic Model Tree (LMT), Best First Tree (BFT), and RF models. The validation results demonstrated that the landslide susceptibility map produced by the hybrid model had the highest goodness-of-fit (AUC = 0.953) and higher prediction accuracy (AUC = 0.919) compared to the benchmark models. The hybrid RoFRF model proposed in this study can be used as a robust predictive model for landslide susceptibility mapping in the mountainous regions around the world.
  •  
5.
  • Ghayour, Laleh, et al. (författare)
  • Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • With the development of remote sensing algorithms and increased access to satellite data, generating up-to-date, accurate land use/land cover (LULC) maps has become increasingly feasible for evaluating and managing changes in land cover as created by changes to ecosystem and land use. The main objective of our study is to evaluate the performance of Support Vector Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood Classification (MLC), Minimum Distance (MD), and Mahalanobis (MH) algorithms and compare them in order to generate a LULC map using data from Sentinel 2 and Landsat 8 satellites. Further, we also investigate the effect of a penalty parameter on SVM results. Our study uses different kernel functions and hidden layers for SVM and ANN algorithms, respectively. We generated the training and validation datasets from Google Earth images and GPS data prior to pre-processing satellite data. In the next phase, we classified the images using training data and algorithms. Ultimately, to evaluate outcomes, we used the validation data to generate a confusion matrix of the classified images. Our results showed that with optimal tuning parameters, the SVM classifier yielded the highest overall accuracy (OA) of 94%, performing better for both satellite data compared to other methods. In addition, for our scenes, Sentinel 2 date was slightly more accurate compared to Landsat 8. The parametric algorithms MD and MLC provided the lowest accuracy of 80.85% and 74.68% for the data from Sentinel 2 and Landsat 8. In contrast, our evaluation using the SVM tuning parameters showed that the linear kernel with the penalty parameter 150 for Sentinel 2 and the penalty parameter 200 for Landsat 8 yielded the highest accuracies. Further, ANN classification showed that increasing the hidden layers drastically reduces classification accuracy for both datasets, reducing zero for three hidden layers.
  •  
6.
  • Mohammadi, Ayub, et al. (författare)
  • A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and Hydrological Models
  • 2020
  • Ingår i: Sensors. - Switzerland : MDPI. - 1424-8220. ; 20:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs’ performance, such as 90-meters’ TanDEM-X and 30-meters’ SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).
  •  
7.
  • Mohammadi, Ayub, et al. (författare)
  • Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models
  • 2020
  • Ingår i: Complexity. - London : Hindawi Publishing Corporation. - 1076-2787 .- 1099-0526. ; 2020
  • Tidskriftsartikel (refereegranskat)abstract
    • Flooding is one of the most damaging natural hazards globally. During the past three years, floods have claimed hundreds of lives and millions of dollars of damage in Iran. In this study, we detected flood locations and mapped areas susceptible to floods using time series satellite data analysis as well as a new model of bagging ensemble-based alternating decision trees, namely, bag-ADTree. We used Sentinel-1 data for flood detection and time series analysis. We employed twelve conditioning parameters of elevation, normalized difference’s vegetation index, slope, topographic wetness index, aspect, curvature, stream power index, lithology, drainage density, proximities to river, soil type, and rainfall for mapping areas susceptible to floods. ADTree and bag-ADTree models were used for flood susceptibility mapping. We used software of Sentinel application platform, Waikato Environment for Knowledge Analysis, ArcGIS, and Statistical Package for the Social Sciences for preprocessing, processing, and postprocessing of the data. We extracted 199 locations as flooded areas, which were tested using a global positioning system to ensure that flooded areas were detected correctly. Root mean square error, accuracy, and the area under the ROC curve were used to validate the models. Findings showed that root mean square error was 0.31 and 0.3 for ADTree and bag-ADTree techniques, respectively. More findings illustrated that accuracy was obtained as 86.61 for bag-ADTree model, while it was 85.44 for ADTree method. Based on AUC, success and prediction rates were 0.736 and 0.786 for bag-ADTree algorithm, in order, while these proportions were 0.714 and 0.784 for ADTree. This study can be a good source of information for crisis management in the study area.
  •  
8.
  • Nhu, Viet-Ha, et al. (författare)
  • Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:15
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to apply and compare the performance of the three machine learningalgorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternatingdecision tree (ADTree)–to map landslide susceptibility along the mountainous road of the SalavatAbad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on fieldsurveys, by recording the locations of the landslides by a global position System (GPS), Google Earthimagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioningfactors, then tested these factors using the information gain ratio (IGR) technique. We checked thevalidity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa,root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC).We found that, although all three machine learning algorithms yielded excellent performance, theSVM algorithm (AUC=0.984) slightly outperformed the BLR (AUC=0.980), and ADTree (AUC=0.977) algorithms. We observed that not only all three algorithms are useful and effective tools foridentifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVMalgorithm as a soft computing benchmark algorithm to check the performance of the models in future.
  •  
9.
  • Nhu, Viet-Ha, et al. (författare)
  • Daily Water Level Prediction of Zrebar Lake (Iran) : A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms
  • 2020
  • Ingår i: ISPRS International Journal of Geo-Information. - Switzerland : MDPI. - 2220-9964. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Zrebar Lake is one of the largest freshwater lakes in Iran and it plays an important role in the ecosystem of the environment, while its desiccation has a negative impact on the surrounded ecosystem. Despite this, this lake provides an interesting recreation setting in terms of ecotourism. The prediction and forecasting of the water level of the lake through simple but practical methods can provide a reliable tool for future lake water resource management. In the present study, we predict the daily water level of Zrebar Lake in Iran through well-known decision tree-based algorithms, including the M5 pruned (M5P), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). We used five different water input combinations to find the most effective one. For our modeling, we chose 70% of the dataset for training (from 2011 to 2015) and 30% for model evaluation (from 2015 to 2017). We evaluated the models’ performances using different quantitative (root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), percent bias (PBIAS) and ratio of the root mean square error to the standard deviation of measured data (RSR)) and visual frameworks (Taylor diagram and box plot). Our results showed that water level with a one-day lag time had the highest effect on the result and, by increasing the lag time, its effect on the result was decreased. This result indicated that all the developed models had a good prediction capability, but the M5P model outperformed the others, followed by RF and RT equally and then REPT. Our results showed that these algorithms can predict water level accurately only with a one-day lag time in water level as an input and they are cost-effective tools for future predictions.
  •  
10.
  • Nhu, Viet-Ha, et al. (författare)
  • Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia) : A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms
  • 2020
  • Ingår i: Forests. - Switzerland : MDPI. - 1999-4907. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We used remote sensing techniques and machine learning to detect and map landslides,and landslide susceptibility in the Cameron Highlands, Malaysia. We located 152 landslides using a combination of interferometry synthetic aperture radar (InSAR), Google Earth (GE), and field surveys. Of the total slide locations, 80% (122 landslides) were utilized for training the selected algorithms, and the remaining 20% (30 landslides) were applied for validation purposes. We employed 17 conditioning factors, including slope angle, aspect, elevation, curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), lithology, soil type, land cover, normalized difference vegetation index (NDVI), distance to river, distance to fault, distance to road, river density, fault density, and road density, which were produced from satellite imageries, geological map, soil maps, and a digital elevation model (DEM). We used these factors to produce landslide susceptibility maps using logistic regression (LR), logistic model tree (LMT), and random forest (RF) models. To assess prediction accuracy of the models we employed the following statistical measures: negative predictive value (NPV), sensitivity, positive predictive value (PPV), specificity, root-mean-squared error (RMSE), accuracy, and area under the receiver operating characteristic (ROC) curve (AUC). Our results indicated that the AUC was 92%, 90%, and 88% for the LMT, LR, and RF algorithms, respectively. To assess model performance, we also applied  onparametric statistical tests of Friedman and Wilcoxon, where the results revealed that there were no practical differences among the used models in the study area. While landslide mapping in tropical environment such as Cameron Highlands remains difficult, the remote sensing (RS) along with machine learning techniques, such as the LMT model, show promise for landslide susceptibility mapping in the study area.
  •  
11.
  • Nhu, Viet-Ha, et al. (författare)
  • Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - Switzerland : MDPI. - 1661-7827 .- 1660-4601. ; 17:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.
  •  
12.
  • Nhu, Viet-Ha, et al. (författare)
  • Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models
  • 2020
  • Ingår i: Water. - Switzerland : MDPI. - 2073-4441. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater is an important natural resource in arid and semi-arid environments, where discharge from karst springs is utilized as the principal water supply for human use. The occurrence of karst springs over large areas is often poorly documented, and interpolation strategies are often utilized to map the distribution and discharge potential of springs. This study develops a novel method to delineate karst spring zones on the basis of various hydrogeological factors. A case study of the Bojnourd Region, Iran, where spring discharge measurements are available for 359 sites, is used to demonstrate application of the new approach. Spatial mapping is achieved using ensemble modelling, which is based on certainty factors (CF) and logistic regression (LR). Maps of the CF and LR components of groundwater potential were generated individually, and then, combined to prepare an ensemble map of the study area. The accuracy (A) of the ensemble map was then assessed using area under the receiver operating characteristic curve. Results of this analysis show that LR (A = 78%) outperformed CF (A = 67%) in terms of the comparison between model predictions and known occurrences of karst springs (i.e., calibration data). However, combining the CF and LR results through ensemble modelling produced superior accuracy (A = 85%) in terms of spring potential mapping. By combining CF and LR statistical models through ensemble modelling, weaknesses in CF and LR methods are offset, and therefore, we recommend this ensemble approach for similar karst mapping projects. The methodology developed here offers an efficient method for assessing spring discharge and karst spring potentials over regional scales.
  •  
13.
  • Nhu, Viet-Ha, et al. (författare)
  • Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - Switzerland : MDPI. - 1661-7827 .- 1660-4601. ; 17:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The declining water level in Lake Urmia has become a significant issue for Iranian policy and decision makers. This lake has been experiencing an abrupt decrease in water level and is at real risk of becoming a complete saline land. Because of its position, assessment of changes in the Lake Urmia is essential. This study aims to evaluate changes in the water level of Lake Urmia using the space-borne remote sensing and GIS techniques. Therefore, multispectral Landsat 7 ETM+ images for the years 2000, 2010, and 2017 were acquired. In addition, precipitation and temperature data for 31 years between 1986 and 2017 were collected for further analysis. Results indicate that the increased temperature (by 19%), decreased rainfall of about 62%, and excessive damming in the Urmia Basin along with mismanagement of water resources are the key factors in the declining water level of Lake Urmia. Furthermore, the current research predicts the potential environmental crisis as the result of the lake shrinking and suggests a few possible alternatives. The insights provided by this study can be beneficial for environmentalists and related organizations working on this and similar topics.
  •  
14.
  • Nhu, Viet-Ha, et al. (författare)
  • Shallow Landslide Susceptibility Mapping : A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - Switzerland : MDPI. - 1661-7827 .- 1660-4601. ; 17:8, s. 1-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms—Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine—in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.
  •  
15.
  • Shahabi, Himan, et al. (författare)
  • Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach : Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier
  • 2020
  • Ingår i: Remote Sensing. - Switzerland : MDPI. - 2072-4292. ; 12:2, s. 1-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Mapping flood-prone areas is a key activity in flood disaster management. In this paper, we propose a new flood susceptibility mapping technique. We employ new ensemble models based on bagging as a meta-classifier and K-Nearest Neighbor (KNN) coarse, cosine, cubic, and weighted base classifiers to spatially forecast flooding in the Haraz watershed in northern Iran. We identified flood-prone areas using data from Sentinel-1 sensor. We then selected 10 conditioning factors to spatially predict floods and assess their predictive power using the Relief Attribute Evaluation (RFAE) method. Model validation was performed using two statistical error indices and the area under the curve (AUC). Our results show that the Bagging–Cubic–KNN ensemble model outperformed other ensemble models. It decreased the overfitting and variance problems in the training dataset and enhanced the prediction accuracy of the Cubic–KNN model (AUC=0.660). We therefore recommend that the Bagging–Cubic–KNN model be more widely applied for the sustainable management of flood-prone areas.
  •  
16.
  • Shahabi, Himan, et al. (författare)
  • Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms
  • 2023
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Landslides are a dangerous natural hazard that can critically harm road infrastructure in mountainous places, resulting in significant damage and fatalities. The primary purpose of this study was to assess the efficacy of three machine learning algorithms (MLAs) for landslide susceptibility mapping including random forest (RF), decision tree (DT), and support vector machine (SVM). We selected a case study region that is frequently affected by landslides, the important Kamyaran–Sarvabad road in the Kurdistan province of Iran. Altogether, 14 landslide evaluation factors were input into the MLAs including slope, aspect, elevation, river density, distance to river, distance to fault, fault density, distance to road, road density, land use, slope curvature, lithology, stream power index (SPI), and topographic wetness index (TWI). We identified 64 locations of landslides by field survey of which 70% were randomly employed for building and training the three MLAs while the remaining locations were used for validation. The area under the receiver operating characteristics (AUC) reached a value of 0.94 for the decision tree compared to 0.82 for the random forest, and 0.75 for support vector machines model. Thus, the decision tree model was most accurate in identifying the areas at risk for future landslides. The obtained results may inform geoscientists and those in decision-making roles for landslide management.
  •  
17.
  • Shahabi, Himan, et al. (författare)
  • Satellite-Synoptic Monitoring of Dominant Dust Entering Western Iran
  • 2023
  • Ingår i: Journal of Sensors. - : Hindawi Publishing Group. - 1687-725X .- 1687-7268. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust storm in Iran's western regions has been one of its major environmental problems in recent years, which has not only turned into a yearly phenomenon but is also expanding. This study investigated two events of dominant dust in southwestern Iran using moderate resolution imaging spectroradiometer imagery, Reanalysis Datasets (meteorological fields and atmospheric compositions), in both hot (July 2, 2008) and cold (February 18, 2017) seasons. After radiometric correction and calculation of brightness temperature as well as the reflective and thermal behavior of dust, the research results showed that the detection of dominant dust entering was 0.645 mu m (visible red) and 0.858 mu m (near-infrared) in the reflective ranges and 3.959, 8.55, 11.03, and 12.02 mu m in the thermal ranges. Synoptically, the lower values for mean sea level pressure from the east Mediterranean along Syria and Iraq to the southwest and Central Asia facilitate a convergence condition in the lower troposphere that induces strong northwesterlies, Shamal winds, over the Middle East toward the Persian Gulf, forming a more expansive aerosol hotspot over southwest Iran. However, on a cold day, high dust events in Arabia and south Iran are related to the ongoing high pressure, which is accompanied by a subtropical jet, following anticyclonic circulation toward southwestern Iran.
  •  
18.
  • Sharifipour, Behzad, et al. (författare)
  • Rangeland species potential mapping using machine learning algorithms
  • 2023
  • Ingår i: Ecological Engineering. - : Elsevier. - 0925-8574 .- 1872-6992. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • Documenting habitats of rangeland plant species is required to properly manage rangelands and to understand ecosystem processes. A reliable rangeland species potential map can help managers and policy makers design a sustainable grazing system on rangelands. The aim of this study is to map the plant species in the Qurveh City rangelands, Kurdistan Province, Iran, using state-of-the-art machine learning algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Naïve Bayes (NB), Bayes Net (BN) and Classification and Regression Tree (CART). A total of 185 rangeland species were used in the study, together with 20 conditioning factors, to build and validate models. The One-R feature section technique and multicollinearity test were used, respectively, to determine the most important factors and correlations between them. Model validation was performed using sensitivity, specificity, accuracy, F1-measure, Matthews correlation coefficient (MCC), Kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC). Results showed that topographic wetness index (TWI), slope angle, elevation, soil phosphorus and soil potassium were the five most important factors to increase the rangeland plants habitat suitability. The Naïve Bayes algorithm (AUC = 0.782) had the highest performance and prediction accuracy and best consistency across the species in the investigated rangeland, followed by the SVM (AUC = 0.763), ANN (AUC = 0.762), CART (AUC = 0.627), and BN (AUC = 0.617) models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy