SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shakhova N.) "

Sökning: WFRF:(Shakhova N.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achberger, Christine, 1968, et al. (författare)
  • State of the Climate in 2011
  • 2012
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 93:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Nina at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Nina. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1 degrees C from 2010 to 2011, associated with cooling influences of La Nina. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Nino to La Nina, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr(-1), almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was well-below average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced above-normal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and above-average surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmer-than-normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3 degrees C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3 degrees C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter.
  •  
2.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
3.
  • Charkin, Alexander N., et al. (författare)
  • Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas : a case study in the Buor-Khaya Gulf, Laptev Sea
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11:5, s. 2305-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (Ra-224, Ra-223, Ra-228, and Ra-226) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. Ra-224 and Ra-224/Ra-223 diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1.7 x 10(6) m(3) d(-1) or 19.9 m(3) s(-1), which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.
  •  
4.
  • Chuvilin, E., et al. (författare)
  • In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments : Key input for understanding the dynamics of subsea permafrost
  • 2022
  • Ingår i: Marine and Petroleum Geology. - : Elsevier BV. - 0264-8172 .- 1873-4073. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant reserves of methane (CH4) are held in the Arctic shelf, but the release of CH4 to the overlying ocean and, subsequently, to the atmosphere has been believed to be restricted by impermeable subsea permafrost, which has sealed the upper sediment layers for thousands of years. Our studies demonstrate progressive degradation of subsea permafrost which controls the scales of CH4 release from the sediment into the water-atmospheric system. Thus, new knowledge about the thermal state of subsea permafrost is crucial for better understanding of the permafrost -hydrate system and associated CH4 release from the East Siberian Arctic Shelf (ESAS) – the broadest and shallowest shelf in the World Ocean, which contains about 80% of subsea permafrost and giant pools of hydrates. Meanwhile, the ESAS, still presents large knowledge gaps in many aspects, especially with respect to subsea permafrost distribution and physical properties of bottom sediments. New field data show that the ESAS has an unfrozen (ice-free) upper sediment layer, which in-situ temperature is −1.0 to −1.8 °C and 0.6оС above the freezing point. On one hand, these cold temperature patterns may be related to the presence of subsea permafrost, which currently primarily occurs in the part of the ESAS that is shallower than 100 m, while ice-bearing sediments may also exist locally under deeper water in the Laptev Sea. On the other hand, the negative bottom sediment temperatures of −1.8 °C measured on the Laptev Sea continental slope sediments underlying water columns as deep as down to 330 m may result from dissociation of gas hydrates or possibly from dense water cascading down from the shelf. In contrast, data collected on recent expeditions in the northern Laptev shelf, zones of warmer bottom temperatures are coinciding with methane seeps, likely induced by seismic and tectonic activity in the area. These warm temperatures are not seen in the East Siberian Sea area, not even in areas of methane seeps, yet with little seismic activity.The thermal conductivity and heat capacity of bottom sediments recorded in the database of thermal parameters for the ESAS areas mainly depend on their lithification degree (density or porosity), moisture content, and particle size distribution. The thermal conductivity and heat capacity average about 1.0 W/(m·K) and 2900 kJ/(m3·K), with ±20% and ±10% variance, respectively, in all sampled Arctic sediments to a sub-bottom interval of 0–0.5 m.
  •  
5.
  • Grinko, A. A., et al. (författare)
  • Sediment Organic Matter in Areas of Intense Methane Release in the Laptev Sea : Characteristics of Molecular Composition
  • 2020
  • Ingår i: Russian Geology and Geophysics. - 1068-7971 .- 1878-030X. ; 61:4, s. 456-477
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of study of the molecular composition of organic matter (OM) in the bottom sediments of the Laptev Sea by gas chromatography-mass spectrometry, isotope gas chromatography-mass spectrometry, and Rock-Eval pyrolytic analysis. The OM of all collected sediment samples shows a significant terrigenous contribution. Compounds that are biomarkers of methanotrophic microorganisms arc also found. A positive correlation between the contents of the studied biomarkers and the contents of pelite and total organic carbon is observed at the sites with documented intense methane bubbling. For example, the average content of C30 hopenes at the methane stations is twice higher than that at the background ones. The average content of C32 alpha beta-hopanes in sediment samples from the methane seepage area is 1.5 tunes higher than that at the background stations. We suggest that the increased C30 alpha beta-hopane content (similar to 1.5 times higher within the methane seepage area) and the decreased more index relative to the C31 hopane index are due to the inflow of OM of petroleum origin. The presence of biphenyl in sediments indicates its petroleum origin, which supports our assumption of the migratory nature of petroleum hydrocarbons in the methane seepage area. Triterpenoids found in the sediment OM indicate diagenetic bacterial transformation of OM in the methane seepage areas, which shows that methane has been released for a long time. We assume the intense activity of the consortium of methanotrophs and sulfate reducers in the methane seepage areas.
  •  
6.
  • Semiletov, I. P., et al. (författare)
  • Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 8:9, s. 2407-2426
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC) into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC) and total inorganic (TCO(2)) carbon: TOC concentration increases, while TCO(2) concentration decreases. Significant inter-annual variability in mean values of TCO(2), TOC, and their sum (total carbon, TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr(-1). The annual Lena River discharge of particulate organic carbon (POC) can be as high as 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin's (1994) statement that 85-95% of total particulate matter (PM) (and POC) precipitates on the marginal filter, then only about 0.03-0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b) in East Siberian Arctic Shelf (ESAS) sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO(2)) and methane (CH(4)). During all seasons the river is supersaturated in CO(2) compared to the atmosphere, by up to 1.5-2 fold in summer, and 4-5 fold in winter. This results in a significant CO(2) supersaturation in the adjacent coastal sea. Localized areas of dissolved CH(4) along the Lena River and in the Lena delta channels may reach 100 nM, but the CH(4) concentration decreases to 5-20nM towards the sea, which suggests that riverborne export of CH(4) plays but a minor role in determining the ESAS CH(4) budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH(4) to the Arctic Ocean.
  •  
7.
  • Winiger, Patrik, et al. (författare)
  • Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 +/- 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.
  •  
8.
  • Anderson, Leif G, 1951, et al. (författare)
  • East Siberian Sea, an Arctic region of very high biogeochemical activity
  • 2011
  • Ingår i: Biogeosciences. ; 8, s. 1745-1754
  • Tidskriftsartikel (refereegranskat)abstract
    • Shelf seas are among the most active biogeochemical marine environments and the East Siberian Sea is a prime example. This sea is supplied by seawater from both the Atlantic and Pacific Oceans and has a substantial input of river runoff. All of these waters contribute chemical constituents, dissolved and particulate, but of different signatures. Sea ice formation during the winter season and melting in the summer has a major impact on physical as well as biogeochemical conditions. The internal circulation and water mass distribution is significantly influenced by the atmospheric pressure field. The western region is dominated by input of river runoff from the Laptev Sea and an extensive input of terrestrial organic matter. The microbial decay of this organic matter produces carbon dioxide (CO2) that oversaturates all waters from the surface to bottom relative to atmospheric level, even when primary production, inferred from low surface water nutrients, has occurred. The eastern surface waters were under-saturated with respect to CO2 illustrating the dominance of marine primary production. The drawdown of dissolved inorganic carbon equals a primary production of ~0.8 ± 2 mol C m−2, which when multiplied by half the area of the East Siberian Sea, ~500 000 km2, results in an annual primary production of 0.4 (± 1) × 1012 mol C or ~4 (± 10) × 1012 gC. Microbial decay occurs through much of the water column, but dominates at the sediment interface where the majority of organic matter ends up, thus more of the decay products are recycled to the bottom water. High nutrient concentrations and fugacity of CO2 and low oxygen and pH were observed in the bottom waters. Another signature of organic matter decomposition, methane (CH4), was observed in very high but variable concentrations. This is due to its seabed sources of glacial origin or modern production from ancient organic matter, becoming available due to sub-sea permafrost thaw and formation of so-called taliks. The decay of organic matter to CO2 as well as oxidation of CH4 to CO2 contribute to a natural ocean acidification making the saturation state of calcium carbonate low, resulting in under-saturation of all the bottom waters with respect to aragonite and large areas of under-saturation down to 50 % with respect to calcite. Hence, conditions for calcifying organisms are very unfavorable.
  •  
9.
  • Chernykh, Denis, et al. (författare)
  • NEW ACOUSTICAL TECHNIQUE TO QUANTIFY METHANE EBULLITION IN SEDIMENT WATER COLUMN : A CASE STUDY IN THE LAPTEV SEA, THE ARCTIC OCEAN
  • 2018
  • Ingår i: Bulletin of the Tomsk Polytechnic University - Geo Assets Engineering. - : National Research Tomsk Polytechnic University. - 2500-1019. ; 329:11, s. 153-167
  • Tidskriftsartikel (refereegranskat)abstract
    • The relevance of the research is caused by the need to develop a scientifically based approach to quantitative estimation of bubble transfer of methane and other gases based on acoustic techniques, which allow reliable estimate of methane flow from the bubble unloading areas by sound locators and submarine sonars. The main aim of the research is to investigate the possible application of an acoustical technique based on acoustic scattering in bubble plumes vs the acoustical technique based on calibration which was applied to quantify in situ sonar observations; to show that both techniques can be used for a quantification of methane ebullition in the bottom-water column system. Objects: gas flares or seeps - the emanations of gas in the form of rising bubbles from the seabottom, which form stable regions of their increased concentration in the water column. Methods: modification of acoustical techniques based on acoustic scattering in bubble plumes and on ist calibration which was applied by authors to quantify in situ single sonar observations. Results. We demonstrate a first attempt to use acoustical techniques based on (1) acoustic scattering in bubble plumes vs acoustical technique based on (2) calibration which was applied to quantify in situ sonar observations. It has been shown that both techniques can be used for a quatitative express-evaluation of methane ebullition in the bottom-water system in any aquatic ecosystem including seas, lakes, and rivers, while the first acoustical technique gives the bubble efflux values -20 % lower then the second acoustical technique.
  •  
10.
  • Cooke, M.P., et al. (författare)
  • Bacteriohopanepolyol biomarker composition of organic matter exported to the Arctic Ocean by seven of the major Arctic rivers
  • 2009
  • Ingår i: Organic Geochemistry. - : Elsevier BV. - 0146-6380 .- 1873-5290. ; 40:11, s. 1151-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteriohopanepolyols (BHPs) are a diverse group of membrane lipids produced by a wide variety of bacteria and can be used as molecular biomarkers for bacterial processes and populations in both modern and ancient environments. A group of BHPs, including adenosylhopane and structurally related compounds, have been identified as being specific to soils, enabling the transport of terrestrial organic matter (terrOM) to the marine realm to be monitored. Estuary surface sediment samples were obtained from the five Great Russian Arctic Rivers (GRARs: Ob, Yenisey, Lena, Indigirka and Kolyma) and river sediments were obtained from two North American Rivers (Yukon and Mackenzie). Analysis of the BHP signatures, using high performance liquid chromatography-tandem mass spectrometry (HPLC-MSn), indicated the presence of 15 different BHPs originating from a variety of different bacteria, as well as a significant presence of terrestrially derived OM. Total BHP abundance and the contribution of the "soil-marker" BHPs to the total BHP pool increased eastwards among the GRAR sediments. This suggests increasing terrestrial OM or increased preservation of OM as a result of shorter periods of permafrost thawing. The North American rivers showed greatly differing BHP levels between the Yukon and Mackenzie rivers, with a greater BHP input and thus a relatively higher soil OM contribution from the Yukon. The Indigirka River basin in the eastern Siberian Arctic appeared to be the epicentre in the pan-Arctic BHP distribution trend, with the highest "soil-marker" BHPs but the lowest tetrafunctionalised BHPs. Aminobacteriohopanepentol, an indicator of aerobic methane oxidation, was observed in all the sediments, with the source being either the marine environment or methane producing terrestrial environments.
  •  
11.
  • Kosmach, D. A., et al. (författare)
  • Methane in the surface waters of Northern Eurasian marginal seas
  • 2015
  • Ingår i: Doklady. Chemistry. - 0012-5008 .- 1608-3113. ; 465, s. 281-285
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 12 000 measurements of the dissolved methane (CH4) concentrations in the surface waters of Northern Eurasian marginal seas (Barents, Kara, Laptev, Chukchi, and Bering Seas, Sea of Okhotsk, and Sea of Japan) during two marine expeditions (September-October 2011 and 2012) show that all seas are CH4 source to the atmosphere, but the Laptev and East Siberian seas demonstrate the strongest signal.
  •  
12.
  • Vonk, J. E., et al. (författare)
  • Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 489:7414, s. 137-140
  • Tidskriftsartikel (refereegranskat)abstract
    • The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere(1,2). Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century(3). Ancient Ice Complex deposits outcropping along the similar to 7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS)(4,5), and associated shallow subsea permafrost(6,7), are two large pools of permafrost carbon(8), yet their vulnerabilities towards thawing and decomposition are largely unknown(9-11). Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region(12,13). There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 +/- 2 per cent) the sedimentary carbon budget of the ESAS, the world's largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 +/- 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies(14). We estimate that about two-thirds (66 +/- 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming(2,13).
  •  
13.
  • Wild, B., et al. (författare)
  • Quantity, origin and degradation state of organic matter in subsea permafrost on the East Siberian Arctic shelf
  • 2019
  • Ingår i: Conference Proceedings, 29th International Meeting on Organic Geochemistry. - : European Association of Geoscientists & Engineers. - 9789462823044
  • Konferensbidrag (refereegranskat)abstract
    • Based on a unique set of three drill cores, we characterize the quantity, origin and degradation state of organic matter through the subsea permafrost with higher resolution across the current thaw front, to improve our understanding of its vulnerability to decomposition upon thaw.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy