SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shao Shimiao) "

Sökning: WFRF:(Shao Shimiao)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Tianlong, et al. (författare)
  • Near-complete phylogeny and taxonomic revision of the world's babblers (Aves: Passeriformes)
  • 2019
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 130, s. 346-356
  • Tidskriftsartikel (refereegranskat)abstract
    • The babblers are a diverse group of passerine birds comprising 452 species. The group was long regarded as a "scrap basket" in taxonomic classification schemes. Although several studies have assessed the phylogenetic relationships for subsets of babblers during the past two decades, a comprehensive phylogeny of this group has been lacking. In this study, we used five mitochondrial and seven nuclear loci to generate a dated phylogeny for babblers. This phylogeny includes 402 species (ca. 89% of the overall clade) from 75 genera (97%) and all five currently recognized families, providing a robust basis for taxonomic revision. Our phylogeny supports seven major clades and reveals several non-monophyletic genera. Divergence time estimates indicate that the seven major clades diverged around the same time (18-20 million years ago, Ma) in the early Miocene. We use the phylogeny in a consistent way to propose a new taxonomy, with seven families and 64 genera of babblers, and a new linear sequence of names.
  •  
2.
  • Cai, Tianlong, et al. (författare)
  • The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds
  • 2020
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 47:7, s. 1612-1625
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Variation in species diversity among different geographical areas may result from differences in speciation and extinction rates, immigration and time for diversification. An area with high species diversity may be the result of a high net diversification rate, multiple immigration events from adjacent regions, and a long time available for the accumulation of species (known as the 'time-for-speciation effect'). Here, we examine the relative importance of the three aforementioned processes in shaping the geographical diversity patterns of a large radiation of passerine birds. Location: Global. Taxon: Babblers (Aves: Passeriformes). Methods: Using a comprehensive phylogeny of extant species (similar to 90% sampled) and distributions of the world's babblers, we reconstructed their biogeographical history and analysed the diversification dynamics. We examined how species richness correlates with the timing of regional colonization, the number of immigration events and the rate of speciation within all 13 geographical distribution regions. Results: We found that babblers likely originated in the Sino-Himalayan Mountains (SHM) in the early Miocene, suggesting a long time for diversification and species accumulation within the SHM. Regression analyses showed the regional diversity of babblers can be well explained by the timing of the first colonization within of these areas, while differences in rates of speciation or immigration have far weaker effects. Nonetheless, the rapid speciation of Zosterops during the Pleistocene has accounted for the increased diversification and accumulation of species in the oceanic islands. Main Conclusions: Our results suggest that the global diversity patterns of babblers have predominantly been shaped by the time-for-speciation effect. Our findings also support an origin centred in tropical and subtropical parts of the SHM, with a cradle of recent diversification in the oceanic islands of the Indo-Pacific and Indian Ocean regions, which provides new insights into the generation of global biodiversity hotspots.
  •  
3.
  • She, Huishang, et al. (författare)
  • Quantifying adaptive divergence of the snowfinches in a common landscape
  • 2022
  • Ingår i: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 28, s. 2579-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • AimSpecies living in a shared environment face similar selective pressures and often evolve adaptive divergence to avoid competition. Quantifying phenotypic divergence and its genetic parallelism among sympatric species is important for understanding of ecologically moderated biodiversity. Here, we integrate ecologic, phenotypic and genomic datasets to study to what extent three sympatrically snowfinches (Montifringilla adamsi, Pyrgilauda ruficollis and Onychostruthus taczanowskii) differ in their adaptations in order to co-exist in a shared environment.LocationQinghai–Tibetan Plateau.MethodsWe used principal component analysis to summarize and compare environmental and phenotypic divergence. We compared phenotypes relevant to body and beak sizes (n = 68) because they are indicators of niche and food segregation, thus critical for establishing co-existence of sympatric birds. We used comparative genomics (n = 33) to identify genetic loci that are highly divergent between species as well as loci unique for each of species. Using vector analyses, we integrated correlation and permutation to quantify parallelism between phenotypic and genetic divergences.ResultsWe found that body and beak sizes are significantly different among three snowfinches. The phenotypic differentiations are greater in species that share similar ecological conditions than in those that do not. We showed that genes related to developmental process are over-represented within highly divergent genomic regions and unique genetic loci of each species. We found that the extent of phenotypic divergence between snowfinch pairs is more strongly correlated with the magnitude of divergence in developmental genes than in the whole genome.Main conclusionsAdaptive divergence of sympatric snowfinches is highly constrained on developmental genes. As this genetic divergence is strongly correlated with divergence of the traits related to segregation in niche and food resources, this correlation reflects either causal effects or indirect consequences of ecological mediated changes. Our study provides novel insights into the mechanisms underlying evolutionary versatility and ecological success among sympatric species.
  •  
4.
  • Zhang, Dezhi, et al. (författare)
  • Genomic differentiation and patterns of gene flow between two long-tailed tit species (Aegithalos)
  • 2017
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 26:23, s. 6654-6665
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of heterogeneous genomic differentiation have been well documented between closely related species, with some highly differentiated genomic regions (genomic differentiation islands) spread throughout the genome. Differential levels of gene flow are proposed to account for this pattern, as genomic differentiation islands are suggested to be resistant to gene flow. Recent studies have also suggested that genomic differentiation islands could be explained by linked selection acting on genomic regions with low recombination rates. Here, we investigate genomic differentiation and gene-flow patterns for autosomes using RAD-seq data between two closely related species of long-tailed tits (Aegithalos bonvaloti and A.fuliginosus) in both allopatric and contact zone populations. The results confirm recent or ongoing gene flow between these two species. However, there is little evidence that the genomic regions that were found to be highly differentiated between the contact zone populations are resistant to gene flow, suggesting that differential levels of gene flow is not the cause of the heterogeneous genomic differentiation. Linked selection may be the cause of genomic differentiation islands between the allopatric populations with no or very limited gene flow, but this could not account for the heterogeneous genomic differentiation between the contact zone populations, which show evidence of recent or ongoing gene flow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy