SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Shivani) "

Sökning: WFRF:(Sharma Shivani)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dutta, Subhajit, et al. (författare)
  • Three-in-One C2H2-Selectivity-Guided Adsorptive Separation across an Isoreticular Family of Cationic Square-Lattice MOFs
  • 2021
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773.
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy-efficient selective physisorption driven C2H2 separation from industrial C2-C1 impurities such as C2H4, CO2 and CH4 is of great importance in the purification of downstream commodity chemicals. We address this challenge employing a series of isoreticular cationic metal-organic frameworks, namely iMOF-nC (n=5, 6, 7). All three square lattice topology MOFs registered higher C2H2 uptakes versus the competing C2-C1 gases (C2H4, CO2 and CH4). Dynamic column breakthrough experiments on the best-performing iMOF-6C revealed the first three-in-one C2H2 adsorption selectivity guided separation of C2H2 from 1:1 C2H2/CO2, C2H2/C2H4 and C2H2/CH4 mixtures. Density functional theory calculations critically examined the C2H2 selective interactions in iMOF-6C. Thanks to the abundance of square lattice topology MOFs, this study introduces a crystal engineering blueprint for designing C2H2-selective layered metal-organic physisorbents, previously unreported in cationic frameworks.
  •  
2.
  • Giovinazzo, Francesco, et al. (författare)
  • Solid Organ Transplantation During COVID-19 Pandemic: An International Web-based Survey on Resources’ Allocation
  • 2021
  • Ingår i: Transplantation direct. - 2373-8731. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Solid organ transplants (SOTs) are life-saving interventions, recently challenged by coronavirus disease 2019 (COVID-19). SOTs require a multistep process, which can be affected by COVID-19 at several phases.Methods. SOT-specialists, COVID-19-specialists, and medical ethicists designed an international survey according to CHERRIES guidelines. Personal opinions about continuing SOTs, safe managing of donors and recipients, as well as equity of resources’ allocation were investigated. The survey was sent by e-mail. Multiple approaches were used (corresponding authors from Scopus, websites of scientific societies, COVID-19 webinars). After the descriptive analysis, univariate and multivariate ordinal regression analysis was performed.Results. There were 1819 complete answers from 71 countries. The response rate was 49%. Data were stratified according to region, macrospecialty, and organ of interest. Answers were analyzed using univariate-multivariate ordinal regression analysis and thematic analysis. Overall, 20% of the responders thought SOTs should not stop (continue transplant without restriction); over 70% suggested SOTs should selectively stop, and almost 10% indicated they should completely stop. Furthermore, 82% agreed to shift resources from transplant to COVID-19 temporarily. Briefly, main reason for not stopping was that if the transplant will not proceed, the organ will be wasted. Focusing on SOT from living donors, 61% stated that activity should be restricted only to “urgent” cases. At the multivariate analysis, factors identified in favor of continuing transplant were Italy, ethicist, partially disagreeing on the equity question, a high number of COVID-19-related deaths on the day of the answer, a high IHDI country. Factors predicting to stop SOTs were Europe except-Italy, public university hospital, and strongly agreeing on the equity question.Conclusions. In conclusion, the majority of responders suggested that transplant activity should be continued through the implementation of isolation measures and the adoption of the COVID-19-free pathways. Differences between professional categories are less strong than supposed.
  •  
3.
  • Kim, Dae-Kyum, et al. (författare)
  • EVpedia: A Community Web Portal for Extracellular Vesicles Research
  • 2015
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 31:6, s. 933-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy