SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Yogita) "

Sökning: WFRF:(Sharma Yogita)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pircs, Karolina, et al. (författare)
  • Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:9, s. 3035-3057
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in aging humans. To address this, we generated induced neurons (iNs) through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. HD-iNs displayed profound deficits in autophagy, characterised by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in ctrl-iNs, highlighting the importance of wild type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rational for future development of autophagy activation therapies.
  •  
2.
  • Birtele, Marcella, et al. (författare)
  • Dual modulation of neuron-specific microRNAs and the REST complex promotes functional maturation of human adult induced neurons
  • 2019
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 593:23, s. 3370-3380
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct neuronal reprogramming can be achieved using different approaches: by expressing neuronal transcription factors or microRNAs; and by knocking down neuronal repressive elements. However, there still exists a high variability in terms of the quality and maturity of the induced neurons obtained, depending on the reprogramming strategy employed. Here, we evaluate different long-term culture conditions and study the effect of expressing the neuronal-specific microRNAs, miR124 and miR9/9*, while reprogramming with forced expression of the transcription factors Ascl1, Brn2, and knockdown of the neuronal repressor REST. We show that the addition of microRNAs supports neuronal maturation in terms of gene and protein expression, as well as in terms of electrophysiological properties.
  •  
3.
  • Birtele, Marcella, et al. (författare)
  • Single-cell transcriptional and functional analysis of dopaminergic neurons in organoid-like cultures derived from human fetal midbrain
  • 2022
  • Ingår i: Development: For advances in developmental biology and stem cells. - : The Company of Biologists. - 1477-9129. ; 149:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells (PSCs) for application in disease modeling, diagnostics, drug screening, and cell-based therapies for Parkinson's Disease (PD). An increased understanding of the timing and molecular mechanisms promoting the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from PSCs. Here, we used droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach revealed that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons, which can be used to guide stem cell-based therapies and disease modeling approaches in PD.
  •  
4.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:10, s. 2203-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
  •  
5.
  • Fiorenzano, Alessandro, et al. (författare)
  • Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.
  •  
6.
  • Garza, Raquel, et al. (författare)
  • LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:44
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.
  •  
7.
  • Garza, Raquel, et al. (författare)
  • Single-cell transcriptomics of human traumatic brain injury reveals activation of endogenous retroviruses in oligodendroglia
  • 2023
  • Ingår i: Cell Reports. - : Elsevier. - 2211-1247. ; 42:11, s. 113395-
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.
  •  
8.
  • Johansson, Pia A, et al. (författare)
  • A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development
  • 2022
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 29:1, s. 8-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.
  •  
9.
  • Jönsson, Marie E, et al. (författare)
  • Activation of endogenous retroviruses during brain development causes an inflammatory response
  • 2021
  • Ingår i: EMBO Journal. - : EMBO Press. - 0261-4189 .- 1460-2075. ; 40:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Endogenous retroviruses (ERVs) make up a large fraction of mammalian genomes and are thought to contribute to human disease, including brain disorders. In the brain, aberrant activation of ERVs is a potential trigger for an inflammatory response, but mechanistic insight into this phenomenon remains lacking. Using CRISPR/Cas9-based gene disruption of the epigenetic co-repressor protein Trim28, we found a dynamic H3K9me3-dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo deletion of Trim28 in cortical NPCs during mouse brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain. Neuronal ERV expression was linked to activated microglia and the presence of ERV-derived proteins in aggregate-like structures. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in an inflammatory response.
  •  
10.
  • Nilsson, Fredrik, et al. (författare)
  • Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.
  •  
11.
  • Petri, Rebecca, et al. (författare)
  • LINE-2 transposable elements are a source of functional human microRNAs and target sites
  • 2019
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 15:3, s. 1008036-1008036
  • Tidskriftsartikel (refereegranskat)abstract
    • Transposable elements (TEs) are dynamically expressed at high levels in multiple human tissues, but the function of TE-derived transcripts remains largely unknown. In this study, we identify numerous TE-derived microRNAs (miRNAs) by conducting Argonaute2 RNA immunoprecipitation followed by small RNA sequencing (AGO2 RIP-seq) on human brain tissue. Many of these miRNAs originated from LINE-2 (L2) elements, which entered the human genome around 100-300 million years ago. L2-miRNAs derived from the 3' end of the L2 consensus sequence and thus shared very similar sequences, indicating that L2-miRNAs could target transcripts with L2s in their 3'UTR. In line with this, many protein-coding genes carried fragments of L2-derived sequences in their 3'UTR: these sequences served as target sites for L2-miRNAs. L2-miRNAs and their targets were generally ubiquitously expressed at low levels in multiple human tissues, suggesting a role for this network in buffering transcriptional levels of housekeeping genes. In addition, we also found evidence that this network is perturbed in glioblastoma. In summary, our findings uncover a TE-based post-transcriptional network that shapes transcriptional regulation in human cells.
  •  
12.
  • Tiklová, Katarína, et al. (författare)
  • Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson’s disease
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell replacement is a long-standing and realistic goal for the treatment of Parkinsonʼs disease (PD). Cells for transplantation can be obtained from fetal brain tissue or from stem cells. However, after transplantation, dopamine (DA) neurons are seen to be a minor component of grafts, and it has remained difficult to determine the identity of other cell types. Here, we report analysis by single-cell RNA sequencing (scRNA-seq) combined with comprehensive histological analyses to characterize intracerebral grafts from human embryonic stem cells (hESCs) and fetal tissue after functional maturation in a pre-clinical rat PD model. We show that neurons and astrocytes are major components in both fetal and stem cell-derived grafts. Additionally, we identify a cell type closely resembling a class of recently identified perivascular-like cells in stem cell-derived grafts. Thus, this study uncovers previously unknown cellular diversity in a clinically relevant cell replacement PD model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy