SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shebanits Kateryna) "

Sökning: WFRF:(Shebanits Kateryna)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shebanits, Kateryna, et al. (författare)
  • Copy number determination of the gene for the human pancreatic polypeptide receptor NPY4R using read depth analysis and droplet digital PCR.
  • 2019
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Copy number variation (CNV) plays an important role in human genetic diversity and has been associated with multiple complex disorders. Here we investigate a CNV on chromosome 10q11.22 that spans NPY4R, the gene for the appetite-regulating pancreatic polypeptide receptor Y4. This genomic region has been challenging to map due to multiple repeated elements and its precise organization has not yet been resolved. Previous studies using microarrays were interpreted to show that the most common copy number was 2 per genome.Results: We have investigated 18 individuals from the 1000 Genomes project using the well-established method of read depth analysis and the new droplet digital PCR (ddPCR) method. We find that the most common copy number for NPY4R is 4. The estimated number of copies ranged from three to seven based on read depth analyses with Control-FREEC and CNVnator, and from four to seven based on ddPCR. We suggest that the difference between our results and those published previously can be explained by methodological differences such as reference gene choice, data normalization and method reliability. Three high-quality archaic human genomes (two Neanderthal and one Denisova) display four copies of the NPY4R gene indicating that a duplication occurred prior to the human-Neanderthal/Denisova split.Conclusions: We conclude that ddPCR is a sensitive and reliable method for CNV determination, that it can be used for read depth calibration in CNV studies based on already available whole-genome sequencing data, and that further investigation of NPY4R copy number variation and its consequences are necessary due to the role of Y4 receptor in food intake regulation.
  •  
2.
  • Shebanits, Kateryna, et al. (författare)
  • Copy number of pancreatic polypeptide receptor gene NPY4R correlates with body mass index and waist circumference
  • 2018
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple genetic studies have linked copy number variation (CNV) in different genes to body mass index (BMI) and obesity. A CNV on chromosome 10q11.22 has been associated with body weight. This CNV region spans NPY4R, the gene encoding the pancreatic polypeptide receptor Y4, which has been described as a satiety-stimulating receptor. We have investigated CNV of the NPY4R gene and analysed its relationship to BMI, waist circumference and self-reported dietary intake from 558 individuals (216 men and 342 women) representing a wide BMI range. The copy number for NPY4R ranged from 2 to 8 copies (average 4.6 +/- 0.8). Rather than the expected negative correlation, we observed a positive correlation between NPY4R copy number and BMI as well as waist circumference (r = 0.267, p = 2.65x 10(-7) and r = 0.256, p = 8x10(-7), respectively). Each additional copy of NPY4R correlated with 2.6 kg/m(2) increase in BMI and 5.67 cm increase in waist circumference (p = 3.3x10(-7) and p = 1x10(-6), respectively) for women. For men, there was no statistically significant correlation between CNV and BMI. Our results suggest that NPY4R genetic variation influences body weight in women, but the exact role of this receptor appears to be more complex than previously proposed.
  •  
3.
  • Shebanits, Kateryna, et al. (författare)
  • Functional characterization in vitro of twelve naturally occurring variants of the human pancreatic polypeptide receptor NPY4R
  • 2019
  • Ingår i: Neuropeptides. - : Elsevier BV. - 0143-4179 .- 1532-2785. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity has become a global health problem and therefore understanding of the mechanisms regulating hunger and satiety is of utmost importance for the development of new treatment strategies. The Y4 receptor, encoded by the NPY4R gene, and its ligand pancreatic polypeptide (PP) have been reported to mediate a satiety signal. Multiple genetic studies have reported an association between NPY4R copy number and body weight. The gene also displays several SNP variants, many of which lead to amino acid differences, making it interesting to study. We have investigated the functional properties of 12 naturally occurring amino acid sequence variants of the Y4 and interpret the results in relation to sequence conservation and our structural model of the human Y4 receptor protein. Three receptor variants, Cys201ECL2Tyr, Val2716.41Leu and Asn3187.49Asp, were found to completely lose functional response, measured as inositol phosphate turnover, while retaining membrane expression. They display high sequence conservation and have important roles in the receptor structure. For two receptor variants the potency of PP was significantly decreased, Cys34NTSer (EC50 = 2.9 nM, p < .001) and Val1353.46Met (EC50 = 3.0 nM, p < .01), compared to wild-type Y4 (EC50 = 0.68 nM). Cys34 forms a disulphide bond with Cys298, linking the N-terminal part to ECL3. The Val1353.46Met variant has an amino acid replacement located in the TM3 helix, one helix turn above the highly conserved ERH motif. This position has influence on the network of residues involved in receptor activation and subsequent inactivation. Sequence conservation and the structural model are consistent with these results. The remaining seven positions had no significant effect on the receptor's functional response compared to wild-type Y4. These positions display more variation during evolution. Understanding of the interactions between the Y4 receptor and its native PP agonist and the effects of amino acid variation on its functional response will hopefully lead to future therapeutic possibilities.
  •  
4.
  •  
5.
  • Shebanits, Kateryna (författare)
  • The human pancreatic polypeptide receptor Y4 : Genetic and functional variation
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Humans are evolutionarily adapted to an environment where food is scarce, but today many live in a world of food abundance. Paired with low physical activity, this may lead to weight gain and obesity. Efficient anti-obesity treatments require understanding of the mechanisms that control hunger, satiety, energy metabolism and body weight. This thesis investigates possible genetic and physiological mechanisms behind these processes.Genetic correlation between body-mass index (BMI) and a highly polymorphic region on chromosome 10 was analysed with regard to single nucleotide polymorphisms (SNPs) and gene copy number variation (CNV). This region contains the gene NPY4R encoding the pancreatic polypeptide (PP) receptor Y4, which has been reported to reduce appetite.The results show that the NPY4R gene was duplicated before the divergence of modern humans from the Neanderthals and the Denisovans (approximately to 400,000–800,000 years ago). The CNV of the NPY4R gene region was investigated by read depth analysis based on genome sequences and droplet digital PCR (ddPCR). The read depth results revealed a CNV range of 3-7 copies per genome, while the ddPCR results demonstrated a range of 2–11. Most humans have a total of 4–5 copies, in contrast to the two copies presumed by previous studies.Investigation of an association between the NPY4R CNV and body mass index (BMI) led to interesting and ambiguous results. A study of 558 Swedish individuals with a wide range of BMI suggested, surprisingly, a positive correlation between NPY4R copy number and BMI for women. On the other hand, a study of 1009 individuals from Northern Sweden found no correlation between BMI and NPY4R copy number. These diverging findings may be due to geographical variation or lack of power in one of these studies.Twelve naturally-occurring amino acid variants of the Y4 receptor were investigated pharmacologically in cell culture. Three of these showed no functional response, which may be explained by altered conformation of the receptors. For two receptor variants PP had a significantly decreased potency. A 3D model of the Y4 receptor was generated based on the crystal structure of the human Y1 receptor. The functional responses of the Y4 variants agree well with the 3D model and with the degree of evolutionary conservation of the positions.In conclusion, these studies reveal unexpectedly large CNV as well as extensive SNP for the NPY4R gene and a possible correlation with BMI that may be due to the differing responses of the naturally occurring receptor variants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy