SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shevchenko Andrej) "

Sökning: WFRF:(Shevchenko Andrej)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wagner, Ines, et al. (författare)
  • Serum proteases potentiate BMP-induced cell cycle re-entry of dedifferentiating muscle cells during newt limb regeneration
  • 2017
  • Ingår i: Developmental Cell. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1534-5807 .- 1878-1551.
  • Tidskriftsartikel (refereegranskat)abstract
    • Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.
  •  
2.
  • Bowden, John A., et al. (författare)
  • Harmonizing lipidomics : NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma
  • 2017
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 58:12, s. 2275-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra-and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium.jlr While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
  •  
3.
  • Burla, Bo, et al. (författare)
  • MS-based lipidomics of human blood plasma : a community-initiated position paper to develop accepted guidelines
  • 2018
  • Ingår i: Journal of Lipid Research. - : American Society for Biochemistry and Molecular Biology. - 0022-2275 .- 1539-7262. ; 59:10, s. 2001-2017
  • Tidskriftsartikel (refereegranskat)abstract
    • Human blood is a self-regenerating lipid-rich biological fluid that is routinely collected in hospital settings. The inventory of lipid molecules found in blood plasma (plasma lipidome) offers insights into individual metabolism and physiology in health and disease. Disturbances in the plasma lipidome also occur in conditions that are not directly linked to lipid metabolism; therefore, plasma lipidomics based on MS is an emerging tool in an array of clinical diagnostics and disease management. However, challenges exist in the translation of such lipidomic data to clinical applications. These relate to the reproducibility, accuracy, and precision of lipid quantitation, study design, sample handling, and data sharing. This position paper emerged from a workshop that initiated a community-led process to elaborate and define a set of generally accepted guidelines for quantitative MS-based lipidomics of blood plasma or serum, with harmonization of data acquired on different instrumentation platforms across independent laboratories as an ultimate goal. We hope that other fields may benefit from and follow such a precedent.
  •  
4.
  • Fernandez, Celine, et al. (författare)
  • Altered Desaturation and Elongation of Fatty Acids in Hormone-Sensitive Lipase Null Mice
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored lipids, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. The aim of this study was to define lipid profiles in plasma, white adipose tissue (WAT) and liver of HSL null mice, in order to better understand the role of this multifunctional enzyme. Methodology/ Principal Findings: This study used global and targeted lipidomics and expression profiling to reveal changed lipid profiles in WAT, liver and plasma as well as altered expression of desaturases and elongases in WAT and liver of HSL null mice on high fat diet. Decreased mRNA levels of stearoyl-CoA desaturase 1 and 2 in WAT were consistent with a lowered ratio of 16:1n7/16:0 and 18:1n9/18:0 in WAT and plasma. In WAT, increased ratio of 18:0/16:0 could be linked to elevated mRNA levels of the Elovl1 elongase. Conclusions: This study illustrates the importance of HSL for normal lipid metabolism in response to a high fat diet. HSL deficiency greatly influences the expression of elongases and desaturases, resulting in altered lipid profiles in WAT, liver and plasma. Finally, altered proportions of palmitoleate, a recently-suggested lipokine, in tissue and plasma of HSL null mice, could be an important factor mediating and contributing to the changed lipid profile, and possibly also to the decreased insulin sensitivity seen in HSL null mice.
  •  
5.
  • Gross, Angelina S., et al. (författare)
  • Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:32, s. 12020-12039
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1(S/A)) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1(S/A) cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1(S/A). Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
  •  
6.
  • Gross, Angelina S., et al. (författare)
  • Acetyl-CoA carboxylase 1–dependent lipogenesis promotes autophagy downstream of AMPK
  • 2019
  • Ingår i: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 294:32, s. 12020-12039
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1S/A) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1S/A cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1S/A. Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
  •  
7.
  • Sinha, Indranil, et al. (författare)
  • Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast
  • 2010
  • Ingår i: Epigenomics. - 1750-1911. ; 2:3, s. 377-393
  • Tidskriftsartikel (refereegranskat)abstract
    • To map histone modifications with unprecedented resolution both globally and locus-specifically, and to link modification patterns to gene expression. Materials & methods: Using correlations between quantitative mass spectrometry and chromatin immunoprecipitation/microarray analyses, we have mapped histone post-translational modifications in fission yeast (Schizosaccharomyces pombe). Results: Acetylations at lysine 9, 18 and 27 of histone H3 give the best positive correlations with gene expression in this organism. Using clustering analysis and gene ontology search tools, we identified promoter histone modification patterns that characterize several classes of gene function. For example, gene promoters of genes involved in cytokinesis have high H3K36me2 and low H3K4me2, whereas the converse pattern is found ar promoters of gene involved in positive regulation of the cell cycle. We detected acetylation of H4 preferentially at lysine 16 followed by lysine 12, 8 and 5. Our analysis shows that this H4 acetylation bias in the coding regions is dependent upon gene length and linked to gene expression. Our analysis also reveals a role for H3K36 methylation at gene promoters where it functions in a crosstalk between the histone methyltransferase Set2(KMT3) and the histone deacetylase Clr6, which removes H3K27ac leading to repression of transcription. Conclusion: Histone modification patterns could be linked to gene expression in fission yeast.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Cazenave-Gassiot, Am ... (2)
Wheelock, Craig E. (2)
Büttner, Sabrina (2)
Carmona-Gutierrez, D ... (2)
Eisenberg, Tobias (2)
Zimmermann, Andreas (2)
visa fler...
Dennis, Edward A. (2)
Abdullah, Laila (1)
Bergquist, Jonas (1)
Wang, Heng (1)
Orešič, Matej, 1967- (1)
Ahonen, Linda (1)
Garrett, Timothy J. (1)
Checa, Antonio (1)
James, Peter (1)
Serhan, Charles N. (1)
Nandakumar, Renu (1)
Holm, Cecilia (1)
Ekwall, Karl (1)
Fernandez, Celine (1)
Aufschnaiter, Andrea ... (1)
Aufschnaiter, Andrea ... (1)
Ström, Kristoffer (1)
Kolmert, Johan (1)
Fiehn, Oliver (1)
Barr, John R. (1)
Bonilla, Carolina (1)
Bowden, John A. (1)
Zhou, Senlin (1)
Heckert, Alan (1)
Ulmer, Candice Z. (1)
Jones, Christina M. (1)
Koelmel, Jeremy P. (1)
Alnouti, Yazen (1)
Armando, Aaron M. (1)
Asara, John M. (1)
Bamba, Takeshi (1)
Borchers, Christoph ... (1)
Brandsma, Joost (1)
Breitkopf, Susanne B ... (1)
Cajka, Tomas (1)
Cinel, Michelle A. (1)
Colas, Romain A. (1)
Cremers, Serge (1)
Evans, James E. (1)
Fauland, Alexander (1)
Gardner, Michael S. (1)
Gotlinger, Katherine ... (1)
Han, Jun (1)
Huang, Yingying (1)
visa färre...
Lärosäte
Karolinska Institutet (3)
Umeå universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Örebro universitet (1)
Lunds universitet (1)
visa fler...
Södertörns högskola (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy