SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shevchouk Olesya) "

Sökning: WFRF:(Shevchouk Olesya)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aranäs, Cajsa, et al. (författare)
  • Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats
  • 2023
  • Ingår i: Ebiomedicine. - 2352-3964. ; 93
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Glucagon-like peptide1 receptor (GLP-1R) agonists have been found to reduce alcohol drinking in ro-dents and overweight patients with alcohol use disorder (AUD). However, the probability of low semaglutide doses, an agonist with higher potency and affinity for GLP-1R, to attenuate alcohol-related responses in rodents and the underlying neuronal mechanisms is unknown.Methods In the intermittent access model, we examined the ability of semaglutide to decrease alcohol intake and block relapse-like drinking, as well as imaging the binding of fluorescently marked semaglutide to nucleus accumbens (NAc) in both male and female rats. The suppressive effect of semaglutide on alcohol-induced locomotor stimulation and in vivo dopamine release in NAc was tested in male mice. We evaluated effect of semaglutide on the in vivo release of dopamine metabolites (DOPAC and HVA) and gene expression of enzymes metabolising dopamine (MAOA and COMT) in male mice.Findings In male and female rats, acute and repeated semaglutide administration reduced alcohol intake and pre-vented relapse-like drinking. Moreover, fluorescently labelled semaglutide was detected in NAc of alcohol-drinking male and female rats. Further, semaglutide attenuated the ability of alcohol to cause hyperlocomotion and to elevate dopamine in NAc in male mice. As further shown in male mice, semaglutide enhanced DOPAC and HVA in NAc when alcohol was onboard and increased the gene expression of COMT and MAOA.Interpretation Altogether, this indicates that semaglutide reduces alcohol drinking behaviours, possibly via a reduction in alcohol-induced reward and NAc dependent mechanisms. As semaglutide also decreased body weight of alcohol-drinking rats of both sexes, upcoming clinical studies should test the plausibility that semaglutide reduces alcohol intake and body weight in overweight AUD patients.Funding Swedish Research Council (2019-01676), LUA/ALF (723941) from the Sahlgrenska University Hospital and the Swedish brain foundation.Copyright & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
2.
  • Corona, Rebeca, et al. (författare)
  • Methods to Assess the Role of Neurogenesis in Reproductive Behaviors of Birds, Rats, and Sheep
  • 2023
  • Ingår i: Neuromethods. - 0893-2336 .- 1940-6045. ; , s. 313-337
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Reproduction represents one of the most important biological events for the organism due to its relevance in perpetuating life. It allows the production of offspring with similar characteristics to the progenitor. The behavioral events of reproduction comprise several changes that prepare the organisms and favor the display of specific behaviors. Reproduction starts with the localization and selection of a possible partner, and this specific moment requires the detection of chemosensory cues that guides their attention and behavior. After the adequate partner is selected, the sexual interaction takes place, usually regulated by females. If pregnancy happens, a series of changes and adaptations occurs within the brain that prepares the mother for the future interaction with the offspring. After delivery, interaction with the offspring during early postpartum along with the pregnancy adaptations of the new mother allows the display of a complex set of parental behaviors that facilitate the care and survival of the newborn. During all these reproductive steps, several adaptations occur within the brain that prepare the organism for its current needs and, in some cases, maintain the changes until the next reproductive episode. The aim of the present chapter is to discuss one of the most complex plastic adaptations, namely adult neurogenesis that occurs in the brain and accompanies the different steps of reproduction in life. From partner attraction and selection through sexual interaction to the parental care of the offspring, we selected three different species in which evidence has shown that neurogenesis plays an important role. We will describe how in songbirds, neurons recently incorporated to the high-vocal center are necessary for the female attraction by facilitating a new singing repertoire of the male each reproductive season. In rats, from the first sexual behavior encounter, neurogenesis in the olfactory bulb is stimulated allowing a facilitation of the following interactions. The deployment of maternal behavior in sheep requires an early and highly specialized odor recognition of the offspring by the mother in which newly born olfactory bulb neurons participate. Additionally, in this chapter we overview two of the most used techniques to visualize and study adult neurogenesis, the use of endogenous and exogenous markers revealed by immunostainings and neuronal precursor labeling by electroporation.
  •  
3.
  • Eerola, Kim, 1982, et al. (författare)
  • Hindbrain insulin controls feeding behavior
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. Methods: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. Results: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and meta-bolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. Conclusions: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis. (c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
4.
  • López-Ferreras, Lorena, et al. (författare)
  • GLP-1 modulates the supramammillary nucleus-lateral hypothalamic neurocircuit to control ingestive and motivated behavior in a sex divergent manner
  • 2019
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 20, s. 178-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control. Methods: Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats. Results: SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats. Conclusion: Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei. (C) 2018 The Authors. Published by Elsevier GmbH.
  •  
5.
  • López-Ferreras, Lorena, et al. (författare)
  • Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation
  • 2021
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior. © 2021 The Authors
  •  
6.
  • Lopez-Ferreras, Lorena, et al. (författare)
  • The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R
  • 2020
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530. ; 119:September
  • Tidskriftsartikel (refereegranskat)abstract
    • Anxiety disorders are among the most prevalent categories of mental illnesses. The gut-brain axis, along with gastrointestinally-derived neuropeptides, like glucagon-like peptide-1 (GLP-1), are emerging as potential key regulators of emotionality, including anxiety behavior. However, the neuroanatomical substrates from which GLP-1 exerts its anxiogenic effect remain poorly characterized. Here we focus on a relatively new candidate nucleus, the supramammillary nucleus (SuM), located just caudal to the lateral hypothalamus and ventral to the ventral tegmental area. Our focus on the SuM is supported by previous data showing expression of GLP-1R mRNA throughout the SuM and activation of the SuM during anxiety-inducing behaviors in rodents. Data show that chemogenetic activation of neurons in the SuM results in an anxiolytic response in male and female rats. In contrast, selective activation of SuM GLP-1R, by microinjection of a GLP-1R agonist exendin-4 into the SuM resulted in potent anxiety-like behavior, measured in both open field and elevated plus maze tests in male and female rats. This anxiogenic effect of GLP-1R activation persisted after high-fat diet exposure. Importantly, reduction of GLP-1R expression in the SuM, by AAV-shRNA GLP-1R knockdown, resulted in a clear anxiolytic response; an effect only observed in female rats. Our data identify a new neural substrate for GLP-1 control of anxiety-like behavior and indicate that the SuM GLP-1R are sufficient for anxiogenesis in both sexes, but necessary only in females.
  •  
7.
  • McLean, A. P., et al. (författare)
  • Rat choice in rapidly changing concurrent schedules
  • 2018
  • Ingår i: Journal of the Experimental Analysis of Behavior. - : Wiley. - 0022-5002. ; 109:2, s. 313-335
  • Tidskriftsartikel (refereegranskat)abstract
    • In two experiments, experimentally naïve rats were trained in concurrent variable-interval schedules in which the reinforcer ratios changed daily according to a pseudorandom binary sequence. In Experiment 1, relative response rates showed clear sensitivity to current-session reinforcer ratios, but not to previous sessions' reinforcer ratios. Within sessions, sensitivity to the current session's reinforcement rates increased steadily, and by session end, response ratios approached matching to the current-session reinforcer ratios. Across sessions, sensitivity to the current session's reinforcer ratio decreased with continued exposure to the pseudorandom binary sequence, contrary to expectations based on previous studies demonstrating learning sets. Using a second group of naïve rats, Experiment 2 replicated the main results from Experiment 1 and showed that although there were increases over sessions in both changeover rate and response rate during the changeover delay, neither could explain the accompanying reductions in sensitivity. We consider the role of reinforcement history, showing that our results can be simulated using two separate representations, one local and one nonlocal, but a more complex approach will be needed to bring together these results and other history effects such as learning sets and spontaneous recovery. © 2018 Society for the Experimental Analysis of Behavior
  •  
8.
  • Mishra, Devesh, et al. (författare)
  • Lateral parabrachial nucleus astrocytes control food intake
  • 2024
  • Ingår i: FRONTIERS IN ENDOCRINOLOGY. - 1664-2392. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.
  •  
9.
  • Mishra, Devesh, et al. (författare)
  • Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 26:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuro-anatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (IPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating IPBN neurons. IL-6 microinjection into IPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of IPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of IPBN IL-6. These results indicate that IPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with IPBN IL-6.
  •  
10.
  • Shevchouk, Olesya, et al. (författare)
  • An Overview of Appetite-Regulatory Peptides in Addiction Processes; From Bench to Bed Side
  • 2021
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-453X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.
  •  
11.
  • Tufvesson-Alm, M., et al. (författare)
  • Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin
  • 2023
  • Ingår i: Frontiers in Psychiatry. - : Frontiers Media SA. - 1664-0640. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.
  •  
12.
  • Vestlund, Jesper, et al. (författare)
  • Activation of glucagon-like peptide-1 receptors reduces the acquisition of aggression-like behaviors in male mice
  • 2022
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggression is a complex social behavior, which is provoked in the defense of limited resources including food and mates. Recent advances show that the gut-brain hormone ghrelin modulates aggressive behaviors. As the gut-brain hormone glucagon-like peptide-1 (GLP-1) reduces food intake and sexual behaviors its potential role in aggressive behaviors is likely. Therefore, we investigated a tentative link between GLP-1 and aggressive behaviors by combining preclinical and human genetic-association studies. The influence of acute or repeated injections of a GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex4), on aggressive behaviors was assessed in male mice exposed to the resident-intruder paradigm. Besides, possible mechanisms participating in the ability of Ex4 to reduce aggressive behaviors were evaluated. Associations of polymorphisms in GLP-1R genes and overt aggression in males of the CATSS cohort were assessed. In male mice, repeated, but not acute, Ex4 treatment dose-dependently reduced aggressive behaviors. Neurochemical and western blot studies further revealed that putative serotonergic and noradrenergic signaling in nucleus accumbens, specifically the shell compartment, may participate in the interaction between Ex4 and aggression. As high-fat diet (HFD) impairs the responsiveness to GLP-1 on various behaviors the possibility that HFD blunts the ability of Ex4 to reduce aggressive behaviors was explored. Indeed, the levels of aggression was similar in vehicle and Ex4 treated mice consuming HFD. In humans, there were no associations between polymorphisms of the GLP-1R genes and overt aggression. Overall, GLP-1 signaling suppresses acquisition of aggressive behaviors via central neurotransmission and additional studies exploring this link are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Shevchouk, Olesya (12)
Skibicka, Karolina P (6)
Richard, Jennifer E. (6)
Eerola, Kim, 1982 (6)
López-Ferreras, Lore ... (5)
Jerlhag, Elisabeth, ... (4)
visa fler...
Mishra, Devesh (4)
Zhang, Qian (2)
Maric, Ivana (2)
Longo, Francesco (2)
Hayes, M. R. (2)
Saliha, Musovic, 199 ... (2)
Olofsson, Charlotta ... (2)
Nilsson, Fredrik H. (2)
Tufvesson-Alm, M (2)
Rorsman, Patrik, 195 ... (1)
Lundström, Sebastian (1)
Wernstedt Asterholm, ... (1)
Westberg, Lars, 1973 (1)
Aranäs, Cajsa (1)
Sköldheden, Sebastia ... (1)
Vestlund, Jesper (1)
Edvardsson, Christia ... (1)
Witley, Sarah (1)
Zentveld, Lindsay (1)
Vallöf, Daniel, 1988 (1)
Tufvesson-Alm, Maxim ... (1)
Asker, Mohammed (1)
Krieger, Jean-Philip ... (1)
Börchers, Stina (1)
Peris, Eduard (1)
Micallef, Peter, 198 ... (1)
Haring, M (1)
Reinbothe, Thomas, 1 ... (1)
Miranda, Caroline (1)
Tolö, Johan (1)
Corona, Rebeca (1)
Gladwyn-Ng, Ivan E. (1)
Hovey, Daniel (1)
Kooijman, S (1)
Tuzinovic, Madeleine (1)
Jansson, L. E. (1)
McLean, A. P. (1)
Grace, R. C. (1)
Cording, J. R. (1)
Porteiro, B. (1)
Grycel, Katarzyna (1)
Grill, H. J. (1)
Nogueiras, R. (1)
visa färre...
Lärosäte
Göteborgs universitet (12)
Karolinska Institutet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy