SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shibistova O) "

Sökning: WFRF:(Shibistova O)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arneth, Almut, et al. (författare)
  • Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments
  • 2006
  • Ingår i: Biogeosciences. - 1726-4189. ; 3:4, s. 421-437
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare assimilation and respiration rates, and water use strategies in four divergent ecosystems located in cold-continental central Siberia and in semi-arid southern Africa. These seemingly unrelated systems have in common a harsh and highly seasonal environment with a very sharp transition between the dormant and the active season, with vegetation facing dry air and soil conditions for at least part of the year. Moreover, the northern high latitudes and the semi-arid tropics will likely experience changes in key environmental parameters (e.g., air temperature and precipitation) in the future; indeed, in some regions marked climate trends have already been observed over the last decade or so. The magnitude of instantaneous or daily assimilation and respiration rates, derived from one to two years of eddy covariance measurements in each of the four ecosystems, was not related to the growth environment. For instance, respiration rates were clearly highest in the two deciduous systems included in the analysis (a Mopane woodland In northern Botswana and a Downy birch forest in Siberia; > 300mmol m(-2) d(-1)), while assimilation rates in the Mopane woodland were relatively similar to a Siberian Scots pine canopy for a large part of the active season (ca. 420 mmol m(-2) d(-1)). Acknowledging the limited number of ecosystems compared here, these data nevertheless demonstrate that factors like vegetation type, canopy phenology or ecosystem age can override larger-scale climate differences in terms of their effects on carbon assimilation and respiration rates. By far the highest rates of assimilation were observed in Downy birch, an early successional species. These were achieved at a rather conservative water use, as indicated by relatively low levels of lambda the marginal water cost of plant carbon gain. Surprisingly, the Mopane woodland growing in the semi-arid environment had significantly higher values of lambda However, its water use strategy included a very plastic response to intermittently dry periods, and values of lambda were much more conservative overall during a rainy season with low precipitation and high air saturation deficits. Our comparison demonstrates that forest ecosystems can respond very dynamically in terms of water use strategy, both on interannual and much shorter time scales. But it remains to be evaluated whether and in which ecosystems this plasticity is mainly due to a short-term stomatal response, or alternatively goes hand in hand with changes in canopy photosynthetic capacity.
  •  
2.
  • Capek, P. T., et al. (författare)
  • A plant-microbe interaction framework explaining nutrient effects on primary production
  • 2018
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:10, s. 1588-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • In most terrestrial ecosystems, plant growth is limited by nitrogen and phosphorus. Adding either nutrient to soil usually affects primary production, but their effects can be positive or negative. Here we provide a general stoichiometric framework for interpreting these contrasting effects. First, we identify nitrogen and phosphorus limitations on plants and soil microorganisms using their respective nitrogen to phosphorus critical ratios. Second, we use these ratios to show how soil microorganisms mediate the response of primary production to limiting and non-limiting nutrient addition along a wide gradient of soil nutrient availability. Using a meta-analysis of 51 factorial nitrogen-phosphorus fertilization experiments conducted across multiple ecosystems, we demonstrate that the response of primary production to nitrogen and phosphorus additions is accurately predicted by our stoichiometric framework. The only pattern that could not be predicted by our original framework suggests that nitrogen has not only a structural function in growing organisms, but also a key role in promoting plant and microbial nutrient acquisition. We conclude that this stoichiometric framework offers the most parsimonious way to interpret contrasting and, until now, unresolved responses of primary production to nutrient addition in terrestrial ecosystems.
  •  
3.
  • Capek, P., et al. (författare)
  • The effect of warming on the vulnerability of subducted organic carbon in arctic soils
  • 2015
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 90, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4-20 degrees C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (C-LOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, C-LOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a "negative priming effect", which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
4.
  • Gentsch, N., et al. (författare)
  • Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia
  • 2015
  • Ingår i: European Journal of Soil Science. - : Wiley. - 1351-0754. ; 66:4, s. 722-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral-associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 +/- 6.7 kg m(-2) within 100 cm soil depth. Density fractionation (density cut-off 1.6 g cm(-3)) revealed that 54 +/- 16% of the total soil OC and 64 +/- 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay-sized minerals (R-2 = 0.80; P < 0.01), co-precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral-bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, C-13-NMR and X-ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral-organic associations. Mineral-associated OM in deeper soil was enriched in C-13 and N-15, and had narrow C:N and large alkyl C:(O-/N-alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water-holding capacity, 15 degrees C, adequate nutrients, 90 days), only 1.5-5% of the mineral-associated OC was released as CO2. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral-organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral-organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange.
  •  
5.
  • Gentsch, N., et al. (författare)
  • Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:14, s. 4525-4542
  • Tidskriftsartikel (refereegranskat)abstract
    • In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, < 1.6 g cm(-3)), mineral associated OM (heavy fraction, HF, > 1.6 g cm(-3)), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 +/- 8.0 kgm(-2) (mean +/- SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35% was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19% in mineral and 13% in organic horizons). During fractionation, approximately 13% of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 +/- 8.1 kgm(-2); all mineral B, C, and permafrost horizons). Approximately 22% of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C/N ratios and high delta C-13 values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.
  •  
6.
  • Tanja, S, et al. (författare)
  • Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring
  • 2003
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 9:10, s. 1410-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of the commencement of photosynthesis (P-*) in spring is an important determinant of growing-season length and thus of the productivity of boreal forests. Although controlled experiments have shed light on environmental mechanisms triggering release from photoinhibition after winter, quantitative research for trees growing naturally in the field is scarce. In this study, we investigated the environmental cues initiating the spring recovery of boreal coniferous forest ecosystems under field conditions. We used meteorological data and above-canopy eddy covariance measurements of the net ecosystem CO2 exchange (NEE) from five field stations located in northern and southern Finland, northern and southern Sweden, and central Siberia. The within- and intersite variability for P-* was large, 30-60 days. Of the different climate variables examined, air temperature emerged as the best predictor for P-* in spring. We also found that 'soil thaw', defined as the time when near-surface soil temperature rapidly increases above 0degreesC, is not a useful criterion for P-*. In one case, photosynthesis commenced 1.5 months before soil temperatures increased significantly above 0degreesC. At most sites, we were able to determine a threshold for air-temperature-related variables, the exceeding of which was required for P-*. A 5-day running-average temperature (T-5) produced the best predictions, but a developmental-stage model (S) utilizing a modified temperature sum concept also worked well. But for both T-5 and S, the threshold values varied from site to site, perhaps reflecting genetic differences among the stands or climate-induced differences in the physiological state of trees in late winter/early spring. Only at the warmest site, in southern Sweden, could we obtain no threshold values for T-5 or S that could predict P-* reliably. This suggests that although air temperature appears to be a good predictor for P-* at high latitudes, there may be no unifying ecophysiological relationship applicable across the entire boreal zone.
  •  
7.
  • Wild, Birgit, et al. (författare)
  • Amino acid production exceeds plant nitrogen demand in Siberian tundra
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using N-15 pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy