SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shin Jae Ho 1987) "

Sökning: WFRF:(Shin Jae Ho 1987)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Han, Won, et al. (författare)
  • Low-cost, open-source contact angle analyzer using a mobile phone, commercial tripods and 3D printed parts
  • 2022
  • Ingår i: HardwareX. - : Elsevier BV. - 2468-0672. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurement of contact angle is important in many areas of science and engineering research. Contact angle analyzers are however not easily accessible due to their expensive cost, which hinders their use in research and also in education. In this study we propose a low-cost contact angle analyzer that can be assembled with 3D printed parts. Mobile phone is used for imaging, and the image is analyzed using an open-source ImageJ plugin. Commercial camera tripods are used as platform that provides movement in many degrees of freedom, which are important in leveling of the substrate and proper imaging of droplets. We utilize the tripods to build imaging modules, sample plate module and volume metering module, each of which perform distinct tasks. Especially, we characterize the usefulness of the volume metering module, which helps users dispense same volume of liquid to reduce human error during measurement. The cost of an analyzer is $255.10, which is an order of magnitude lower compared to commercial products. With the advancement in open source software and upgrades in the hardware modules, we expect that the proposed contact angle analyzer to have a positive impact in resource limited research labs and educational environments.
  •  
2.
  • Thang, Le Tran Huy, et al. (författare)
  • Disposable, pressure-driven, and self-contained cartridge with pre-stored reagents for automated nucleic acid extraction
  • 2023
  • Ingår i: Sensors and Actuators, B: Chemical. - : Elsevier BV. - 0925-4005. ; 375
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleic acid extraction is vital in many applications such as molecular diagnostics, genetic engineering, and deoxyribonucleic acid (DNA) sequencing. Although recent advances in nucleic acid extraction have been made to improve the process using microfluidics, it is still necessary to make it easy for end-users by having pre-loaded reagents, eliminating pipetting between steps, and automating the process for point-of-care (POC) testing. Herein, we present a pressure-driven and self-contained cartridge with pre-stored reagents for automating nucleic acid purification. To reduce operational complexity, reagents were transferred through a microfluidic chip using pressurized air stored inside the cartridge instead of an external pump or valving system. After performing cell lysis, the cartridge was inserted into the device, and the nucleic acid was purified automatically within 3 min Escherichia coli (E. coli) O157:H7 DNA extracted by our device showed similar concentration, purity, and real-time polymerase chain reaction (qPCR) results as the conventional column-based nucleic acid extraction method. Our device achieved a detection limit of 103 CFU for E. coli DNA, which is the same as that obtained using the conventional solid-phase extraction method. This study introduces a novel approach for automating the sample preparation process, which can help in facilitating POC molecular diagnostics.
  •  
3.
  • Karlsson, Emma, 1983, et al. (författare)
  • In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocel-lulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them.
  •  
4.
  • Nakano, H., et al. (författare)
  • Haemogenic endocardium contributes to transient definitive haematopoiesis
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Haematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial and haematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a haemogenic organ akin to the dorsal aorta. Here we examine the haemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Haemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the haemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells serve as a de novo source for transient definitive haematopoietic progenitors. © 2013 Macmillan Publishers Limited. All rights reserved.
  •  
5.
  • Novy, Vera, 1986, et al. (författare)
  • Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases
  • 2021
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 297:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications, however, requires deeper knowledge of cutinases’ biodiversity and structure–function relationships. Here, we mined over 3000 members from carbohydrate esterase family 5 for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis, which showed that cutinases with available crystal structures were phylogenetically closely related. We then selected nine phylogenic diverse cutinases for recombinant production and characterized their kinetic activity against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C2 to C16). Each investigated cutinase had a unique activity fingerprint against the tested pNP substrates. The five enzymes with the highest activity on pNP-C12 and C16, indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure–function analysis. All five enzymes showed a decrease in kcat values with increasing substrate chain length, whereas KM values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low KM values, resulting in high catalytic efficiencies toward pNP-C16. Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.
  •  
6.
  • Oster, Liya F., et al. (författare)
  • Rna Compaction in the Presence of Polyvalent Cations
  • 2017
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495. ; 112:3, s. 367a-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The effects of polyvalent cations on the effective size and charge of double-stranded DNA (dsDNA) have been well studied. In the presence of polyvalent cations, dsDNA in dilute solution undergoes a single-molecule, first-order phase transition, otherwise called condensation: more explicitly, upon onset of 90% neutralization of the phosphate backbone, the DNA undergoes discontinuous compaction into tightly wound toroids. However, the effects of these cations on long single-stranded RNAs (ssRNA) have not been well characterized. In this study we use centrifugation methods to examine the effective size of long ssRNAs in solutions of increasing concentration of the tetravalent cation spermine. In contrast to the case of dsDNA, we find only a continuous decrease in the size of ssRNA upon increase in spermine concentration. However, the decrease is significant enough to suggest that RNA molecules longer than viral genomes can be packaged in vitro into virus-like vectors for gene delivery.
  •  
7.
  • Saez Jimenez, Veronica, 1985, et al. (författare)
  • Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzymatic reactions leading to the deamination of β-lysine, lysine, or 2-aminoadipic acid are of great interest for the metabolic conversion of lysine to adipic acid. Enzymes able to carry out these reactions are not known, however ammonia lyases (EC 4.3.1.-) perform deamination on a wide range of substrates. We have studied 3-methylaspartate ammonia lyase (MAL, EC 4.3.1.2) as a potential candidate for protein engineering to enable deamination towards β-lysine, that we have shown to be a competitive inhibitor of MAL. We have characterized MAL activity, binding and inhibition properties on six different compounds that would allow to define the molecular determinants necessary for MAL to deaminate our substrate of interest. Docking calculations showed that β-lysine as well as the other compounds investigated could fit spatially into MAL catalytic pocket, although they probably are weak or very transient binders and we identified molecular determinants involved in the binding of the substrate. The hydrophobic interactions formed by the methyl group of 3-methylaspartic acid, together with the presence of the amino group on carbon 2, play an essential role in the appropriate binding of the substrate. The results showed that β-lysine is able to fit and bind in MAL catalytic pocket and can be potentially converted from inhibitor to substrate of MAL upon enzyme engineering. The characterization of the binding and inhibition properties of the substrates tested here provide the foundation for future and more extensive studies on engineering MAL that could lead to a MAL variant able to catalyse this challenging deamination reaction.
  •  
8.
  • Shin, Jae Ho, 1987 (författare)
  • A comprehensive metabolic map for production of bio-based chemicals
  • 2019
  • Ingår i: Nature Catalysis. - : Springer Science and Business Media LLC. - 2520-1158. ; 2:1, s. 18-33
  • Forskningsöversikt (refereegranskat)abstract
    • Production of industrial chemicals using renewable biomass feedstock is becoming increasingly important to address limited fossil resources, climate change and other environmental problems. To develop high-performance microbial cell factories, equivalent to chemical plants, microorganisms undergo systematic metabolic engineering to efficiently convert biomass-derived carbon sources into target chemicals. Over the past two decades, many engineered microorganisms capable of producing natural and non-natural chemicals have been developed. This Review details the current status of representative industrial chemicals that are produced through biological and/or chemical reactions. We present a comprehensive bio-based chemicals map that highlights the strategies and pathways of single or multiple biological reactions, chemical reactions and combinations thereof towards production of particular chemicals of interest. Future challenges are also discussed to enable production of even more diverse chemicals and more efficient production of chemicals from renewable feedstocks
  •  
9.
  • Shin, Jae Ho, 1987 (författare)
  • Bio‐based production of C2–C6 platform chemicals
  • 2012
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 109:10, s. 2437-2459
  • Tidskriftsartikel (refereegranskat)abstract
    • Platform chemicals composed of 2-6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2-C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers.
  •  
10.
  •  
11.
  • Shin, Jae Ho, 1987 (författare)
  • Engineering synthetic pathways for adipic acid biosynthesis
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Utilization of petroleum in consumer product manufacturing is causing irreversible environmental damage. Its impact on land, sea, and air calls for the development of more sustainable technologies based on the use of renewable materials such as lignocellulosic biomass and its conversion into platform chemicals. Engineering microorganisms to produce chemicals is an important undertaking to address such issues and bio-based production of adipic acid especially has gained recent attention. In the present thesis I assess the in vivo and in silico action of enzymes involved in microbial production of adipic acid from simple sugar molecules. The aim of this work was to comprehensively map out the metabolic pathways leading to adipic acid biosynthesis and to investigate the enzymatic components of the L-lysine pathway, the reverse β-oxidation pathway, and cis,cis -muconic acid reduction. Investigation of theoretical and in silico aspects in the deamination step in the L-lysine pathway revealed deamination of L-lysine was determined to be chemically difficult to occur. Removal of the β-amino group from β-D-lysine was deemed more feasible than the α-amino group from L-lysine, and an alternative route via β-D-lysine deamination was suggested. Homology modeling and molecular docking studies shed light on the substrate binding mechanisms of enzymes responsible for the reduction of the intermediates in the L-lysine pathway. Potential mechanism and feasibility of α,β-reduction were explained in terms of substrate interaction in the enzyme-binding pockets. Corynebacterium glutamicum was chosen as the host chassis for achieving adipic acid synthesis via reverse β-oxidation. Stepwise construction of a five-step synthetic pathway demonstrated functionality of each step in C. glutamicum. Biosynthesized and secreted 3-hydroxyadipate was detected in the cultivation broth using GC/MS. Weak trans-2-hexenedioic acid and adipic acid signals was observed using LC/MS after concentrating the cultivation broth. Dehydration of 3-hydroxyadipyl-CoA was identified as a potential bottleneck hindering this pathway. While implementing the reverse β-oxidation pathway, a new pathway involving cis,cis -muconic acid and 3-oxoadipic acid was observed and experimented on. The modified strategy for bio-conversion of benzoic acid to cis,cis -muconic acid was successful and molecular docking studies were carried out to better understand how oxidoreductases might reduce cis,cis -muconic acid. Taking multiple approaches to generate adipic acid revealed different challenges in each pathway. One approach led to biosynthesis of adipic acid. Further investigation will allow multiple options for bio-based adipic acid production for better sustainability.
  •  
12.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid
  • 2021
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis. Results: To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid. Conclusions: In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.
  •  
13.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results: Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His 6 -Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H 36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions:Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources.
  •  
14.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Metabolic engineering of microorganisms for the production of L-arginine and its derivatives
  • 2014
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.
  •  
15.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Molecular docking and linear interaction energy studies give insight to α, β-reduction of enoate groups in enzymes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Production of adipic acid from renewable sources has been gaining attention in an attempt to move from an oil-based economy to a biobased economy. Metabolic engineering allows microorganisms to produce useful chemicals using renewable resources as carbon sources. We target a theoretical metabolic pathway that relies on conversion of L-lysine to adipic acid. One of the enzymatic steps in this conversion pathway is an α, β-reduction of an unsaturated bond in an enoate moiety and no aerobic enzymes have been identified to specifically make this conversion on 6-amino-trans-2-hexenoic acid. We evaluated Escherichia coli NemA, and Saccharomyces pastorianus Oye1 (Old Yellow Enzyme 1) for their potenstial capability to carry out the desired α, β-reduction. Here, we build homology models for E. coli NemA and perform molecular docking studies of trans-2-hexenoic acid and trans-2-hexenal to the candidate enzyme models. Ligand-enzyme binding stability is assessed by molecular dynamics (MD) simulations. Additionally, linear energy calculations were used to investigate binding stability in solution environment. Here, we propose that NemA and Oye1, both belonging to the Old yellow enzyme family, have large enough catalytic pocket for accommodating enoate moieties but not enough stability to carry out the α, β-reduction. Protein engineering of both NemA and Oye1 would be necessary for these enzymes to perform the targeted reactions efficiently. The results shown in this study provides a useful insight to α, β-reduction reaction potentially crucial in bio-based production of adipic acid.
  •  
16.
  •  
17.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Synthetic pathway engineering in Corynebacterium glutamicum for production of adipic acid
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We are interested in production of adipic acid from renewable sources using a gram-positive bacterium, Corynebacterium glutamicum ATCC 13032, as a target for metabolic engineering. We aim to construct a synthetic pathway that would allow biosynthesis of adipic acid and to implement it into the host chassis for utilizing simple sugar, glucose, as the starting raw material. The chosen pathway stems off from intermediates from the central metabolism and requires 5 synthetic biochemical steps before reaching adipic acid. The pathway is equipped with a promiscuous enzyme to allow leakage at each metabolic step and byproduct formation in order to monitor the efficiency of each step of the pathway. In order to ensure translation, each gene introduced was codon-optimized to C. glutamicum. Introducing the synthetic genes one by one into C. glutamicum as well as flask-level cultivation of engineered strains in a semi-defined medium allowed detection of each byproduct of the pathway leading up to adipic acid by GC/MS based methods. Further, the codon-optimized version of the 5 synthetic genes were constructed in 2 separate operons each with an inducible promoter. Finally, we analyzed the translational efficiency of the genes and modified the constructs for a better operon expression. We implement additional sample preparation methods for isolating and concentrating adipic acid content for better analysis. The results shown here will be used to further develop  and complete biosynthesis of adipic acid from a C. glutamicum chassis.
  •  
18.
  • Skoog, Emma, 1983, et al. (författare)
  • Biobased adipic acid – The challenge of developing the production host
  • 2018
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750. ; 36:8, s. 2248-2263
  • Forskningsöversikt (refereegranskat)abstract
    • Adipic acid is a platform chemical, and is the most important commercial dicarboxylic acid. It has been targeted for biochemical conversion as an alternative to present chemical production routes. From the perspective of bioeconomy, several kinds of raw material are of interest including the sugar platform (derived from starch, cellulose or hemicellulose), the lignin platform (aromatics) and the fatty acid platform (lipid derived). Two main biochemical-based production schemes may be employed: (i) direct fermentation to adipic acid, or (ii) fermentation to muconic or glucaric acid, followed by chemical hydrogenation (indirect fermentation). This review presents a comprehensive description of the metabolic pathways that could be constructed and analyzes their respective theoretical yields and metabolic constraints. The experimental yields and titers obtained so far are low, with the exception of processes based on palm oil and glycerol, which have been reported to yield up to 50 g and 68 g adipic acid/L, respectively. The challenges that remain to be addressed in order to achieve industrially relevant production levels include solving redox constraints, and identifying and/or engineering enzymes for parts of the metabolic pathways that have yet to be metabolically demonstrated. This review provides new insights into ways in which metabolic pathways can be constructed to achieve efficient adipic acid production. The production host provides the chassis to be engineered via an appropriate metabolic pathway, and should also have properties suitable for the industrial production of adipic acid. An acidic process pH is attractive to reduce the cost of downstream processing. The production host should exhibit high tolerance to complex raw material streams and high adipic acid concentrations at acidic pH.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy