SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shirzadi R) "

Sökning: WFRF:(Shirzadi R)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Ghasemian, Bahareh, et al. (författare)
  • A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
  • 2022
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We mapped landslide susceptibility in Kamyaran city of Kurdistan Province, Iran, using a robust deep-learning (DP) model based on a combination of extreme learning machine (ELM), deep belief network (DBN), back propagation (BP), and genetic algorithm (GA). A total of 118 landslide locations were recorded and divided in the training and testing datasets. We selected 25 conditioning factors, and of these, we specified the most important ones by an information gain ratio (IGR) technique. We assessed the performance of the DP model using statistical measures including sensitivity, specificity, accuracy, F1-measure, and area under-the-receiver operating characteristic curve (AUC). Three benchmark algorithms, i.e., support vector machine (SVM), REPTree, and NBTree, were used to check the applicability of the proposed model. The results by IGR concluded that of the 25 conditioning factors, only 16 factors were important for our modeling procedure, and of these, distance to road, road density, lithology and land use were the four most significant factors. Results based on the testing dataset revealed that the DP model had the highest accuracy (0.926) of the compared algorithms, followed by NBTree (0.917), REPTree (0.903), and SVM (0.894). The landslide susceptibility maps prepared from the DP model with AUC = 0.870 performed the best. We consider the DP model a suitable tool for landslide susceptibility mapping.
  •  
5.
  • Nhu, Viet-Ha, et al. (författare)
  • Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia) : A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms
  • 2020
  • Ingår i: Forests. - Switzerland : MDPI. - 1999-4907. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We used remote sensing techniques and machine learning to detect and map landslides,and landslide susceptibility in the Cameron Highlands, Malaysia. We located 152 landslides using a combination of interferometry synthetic aperture radar (InSAR), Google Earth (GE), and field surveys. Of the total slide locations, 80% (122 landslides) were utilized for training the selected algorithms, and the remaining 20% (30 landslides) were applied for validation purposes. We employed 17 conditioning factors, including slope angle, aspect, elevation, curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), lithology, soil type, land cover, normalized difference vegetation index (NDVI), distance to river, distance to fault, distance to road, river density, fault density, and road density, which were produced from satellite imageries, geological map, soil maps, and a digital elevation model (DEM). We used these factors to produce landslide susceptibility maps using logistic regression (LR), logistic model tree (LMT), and random forest (RF) models. To assess prediction accuracy of the models we employed the following statistical measures: negative predictive value (NPV), sensitivity, positive predictive value (PPV), specificity, root-mean-squared error (RMSE), accuracy, and area under the receiver operating characteristic (ROC) curve (AUC). Our results indicated that the AUC was 92%, 90%, and 88% for the LMT, LR, and RF algorithms, respectively. To assess model performance, we also applied  onparametric statistical tests of Friedman and Wilcoxon, where the results revealed that there were no practical differences among the used models in the study area. While landslide mapping in tropical environment such as Cameron Highlands remains difficult, the remote sensing (RS) along with machine learning techniques, such as the LMT model, show promise for landslide susceptibility mapping in the study area.
  •  
6.
  • Shirzadi, Mehdi, et al. (författare)
  • An Accurate and Real-time Method for Resolving Superimposed Action Potentials in MultiUnit Recordings
  • 2023
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 70:1, s. 378-389
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Spike sorting of muscular and neural recordings requires separating action potentials that overlap in time (superimposed action potentials (APs)). We propose a new algorithm for resolving superimposed action potentials, and we test it on intramuscular EMG (iEMG) and intracortical recordings. Methods: Discrete-time shifts of the involved APs are first selected based on a heuristic extension of the peel-off algorithm. Then, the time shifts that provide the minimal residual Euclidean norm are identified (Discrete Brute force Correlation (DBC)). The optimal continuous-time shifts are then estimated (High-Resolution BC (HRBC)). In Fusion HRBC (FHRBC), two other cost functions are used. A parallel implementation of the DBC and HRBC algorithms was developed. The performance of the algorithms was assessed on 11,000 simulated iEMG and 14,000 neural recording superpositions, including two to eight APs, and eight experimental iEMG signals containing four to eleven active motor units. The performance of the proposed algorithms was compared with that of the Branch-and-Bound (BB) algorithm using the Rank-Product (RP) method in terms of accuracy and efficiency. Results: The average accuracy of the DBC, HRBC and FHRBC methods on the entire simulated datasets was 92.16±17.70, 93.65±16.89, and 94.90±15.15 (%). The DBC algorithm outperformed the other algorithms based on the RP method. The average accuracy and running time of the DBC algorithm on 10.5 ms superimposed spikes of the experimental signals were 92.1±21.7 (%) and 2.3±15.3 (ms). Conclusion and Significance: The proposed algorithm is promising for real-time neural decoding, a central problem in neural and muscular decoding and interfacing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy