SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shustov B.M.) "

Sökning: WFRF:(Shustov B.M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boyarchuk, A. A., et al. (författare)
  • Scientific problems addressed by the Spektr-UV space project (world space Observatory-Ultraviolet)
  • 2016
  • Ingår i: Astronomy reports (Print). - 1063-7729 .- 1562-6881. ; 60:1, s. 1-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory-Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.
  •  
2.
  • Greiner, J., et al. (författare)
  • GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 551-582
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. 1). These gamma-ray observations will be complemented by observations in the soft X-ray and (near-)infrared region with the corresponding telescopes placed on a separate satellite. The Gamma-Ray Imaging, Polarimetry and Spectroscopy ("GRIPS") mission with its three instruments Gamma-Ray Monitor (GRM), X-Ray Monitor (XRM) and InfraRed Telescope (IRT) addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.
  •  
3.
  • Wild, W., et al. (författare)
  • Millimetron—a large Russian-European submillimeter space observatory
  • 2009
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:1, s. 221-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy