SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shvedova AA) "

Search: WFRF:(Shvedova AA)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Kagan, VE, et al. (author)
  • Appetizing rancidity of apoptotic cells for macrophages: oxidation, externalization, and recognition of phosphatidylserine
  • 2003
  • In: American journal of physiology. Lung cellular and molecular physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504. ; 285:1, s. L1-L17
  • Journal article (peer-reviewed)abstract
    • Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Shvedova, AA, et al. (author)
  • Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems
  • 2010
  • In: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 50, s. 63-88
  • Journal article (peer-reviewed)abstract
    • Engineered nanomaterials have unique physico-chemical properties that make them promising for many technological and biomedical applications, including tissue regeneration, drug and gene delivery, and in vivo monitoring of disease processes. However, with the burgeoning capabilities to manipulate structures at the nano-scale, intentional as well as unintentional human exposures to engineered nanomaterials are set to increase. Nanotoxicology is an emerging discipline focused on understanding the properties of engineered nanomaterials and their interactions with biological systems, and may be viewed as the study of the undesirable interference between man-made nanomaterials and cellular nanostructures or nanomachines. In this review, we discuss recognition of engineered nanomaterials by the immune system, our primary defense system against foreign invasion. Moreover, as oxidative stress is believed to be one of the major deleterious consequences of exposure to nanomaterials, we explore triggering of pro- and antioxidant pathways as well as biomarkers of oxidative stress. Finally, we highlight in vivo studies of the toxicological outcomes of engineered nanomaterials, including carbon nanotubes, with an emphasis on inflammation and genotoxic responses.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view