SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Siddique Kadambot H.M.) "

Search: WFRF:(Siddique Kadambot H.M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Cheng, et al. (author)
  • Response of plastic film mulched maize to soil and atmospheric water stresses in an arid irrigation area
  • 2024
  • In: European Journal of Agronomy. - 1161-0301. ; 154
  • Journal article (peer-reviewed)abstract
    • Water stress can severely decrease crop productivity by restricting photosynthesis, while the use of plastic film mulching can mitigate these water stress effects. However, the intricacies of photosynthetic and stomatal responses to soil water stress under plastic film mulching, particularly when combined with atmospheric water stress, have not been well studied, especially in arid irrigation areas. Limited research has investigated photosynthetic chlorophyll fluorescence parameters, stomatal responses, grain filling process and crop productivity to soil and atmospheric water stress under plastic film mulching. Our study addresses this knowledge gap through a comprehensive field experiment in an arid irrigation area involving maize (Zea mays L.). Well-watered and water deficit conditions with and without plastic film mulching treatments, alone or combined with atmospheric water stress (different vapor pressure deficits) were conducted. Our findings revealed that soil water stress significantly increased stomatal limitations (by 6.4–12.4 %) and may cause non-stomatal limitations. Plastic film mulching significantly improved plant photosynthetic performance (increased net photosynthesis rate by 12.2–39.8 %), chlorophyll fluorescence parameters, and stomatal regulation. Under mulched conditions, soil water stress primarily affected photosynthetic performance through stomatal limitations. Moreover, plastic film mulching significantly improved grain filling process (increased grain-filling rate by 6.3–78.5 %) and productivity (increased grain yield by 12.1–45.8 %) in spring maize subjected to soil water stress. Atmospheric water stress, alone or combined with soil water stress, influenced plant photosynthetic performance, decreasing the net photosynthesis rate and stomatal conductance. Mulching enhanced photosynthetic performance under atmospheric water stress. Overall, the positive effect of mulching on spring maize photosynthetic performance and productivity under soil and atmospheric water stresses holds promise for alleviating water resource shortages and addressing global climate warming issues in arid irrigation areas.
  •  
2.
  • Li, Cheng, et al. (author)
  • Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area
  • 2023
  • In: Agricultural Water Management. - : Elsevier BV. - 0378-3774. ; 280
  • Journal article (peer-reviewed)abstract
    • Ridge-furrow mulching system is widely used for improving soil hydrothermal conditions and crop productivity in semiarid and arid rainfed areas. The response of crop productivity to resource capture and utilization is crucial for agricultural field management and sustainable development. However, few have simultaneously investigated the coupling effect of plastic film mulching (PM) types and planting patterns on root and shoot growth, photosynthesis, yield, resource capture and utilization as well as their potential links in the same experiment, especially in arid irrigation areas, limiting our understanding of PM and ridge planting application. This study conducted a two-year field experiment with four treatments: 1) flat planting with transparent plastic film mulch (FT); 2) flat planting with black plastic film mulch (FB); 3) ridge–furrow planting with transparent plastic film mulch (RT); 4) ridge–furrow planting with black plastic film mulch (RB). The results showed that RT significantly increased soil water storage and root growth at the silking and grain-filling stages in both years by enhancing soil thermal time with 151.9–176.2 °C d and the intercepted photosynthetic active radiation with 22.2–57.4 MJ m–2. In addition, RT had a significantly higher net photosynthetic rate than FT and FB at the 12-leaf and silking stages, enhancing the transportation of stem and leaf to grain. The logistic equation using growing degree days as the independent variable characterized the dynamic features of maize growth under different PM types (transparent or black) coupled with ridge–furrow planting. RT accelerated dry matter accumulation by enhancing the maximum growth rate and extending the rapid growth period, resulting in 12.9–15.2 % more dry matter accumulation and 10.0–16.7 % higher grain yields than FB. Furthermore, RT significantly increased resource use efficiencies by 10.1–17.3 % for water, 3.0–5.5 % for thermal, and 4.0–9.1 % for radiation compared with FB. Ridge planting had the highest contributor rates, with >40 % for yield and resource capture. This study suggests that RT maintains high maize productivity and resource use efficiencies in arid irrigation areas with limited water resources by regulating soil water, heat, and canopy radiation distribution and utilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Li, Cheng (2)
Zhang, Wenxin (2)
Feng, Hao (2)
Siddique, Kadambot H ... (2)
Li, Yue (1)
Wang, Naijiang (1)
show more...
Luo, Xiaoqi (1)
Zhang, Tibin (1)
Dong, Qin'ge (1)
Wang, Jingui (1)
Zhang, Yunxin (1)
show less...
University
Lund University (2)
Language
English (2)
Research subject (UKÄ/SCB)
Natural sciences (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view